蓝书(算法竞赛进阶指南)刷题记录——CH5102 Mobile Service(DP)

题目:CH5102.
题目大意:三个人一开始在 1 , 2 , 3 1,2,3 1,2,3的位置,现在有 n n n次操作,每次给定一个 1 1 1~ l l l的坐标(必须按顺序),他们之中必须有一个人走到这个坐标,且他们之中不能有两人站在同一位置,从点 x x x走到点 y y y的花费为 c ( x , y ) c(x,y) c(x,y),求最小花费.
1 ≤ n ≤ 1 0 3 , 1 ≤ l ≤ 200 1\leq n\leq 10^3,1\leq l\leq 200 1n103,1l200.

首先这是一道十分裸的DP,我们可以设状态 f [ i ] [ x ] [ y ] [ z ] f[i][x][y][z] f[i][x][y][z]为走过前 i i i个给定坐标,且当前第一个人在位置 x x x,第二个人在位置 y y y,第三个人在位置 z z z的最小花费.

考虑三个人的走法,设第 i i i个坐标为 g o [ i ] go[i] go[i],我们可以很容易推出方程:
f [ i + 1 ] [ g o [ i + 1 ] ] [ y ] [ z ] = m i n ( f [ i ] [ x ] [ y ] [ z ] + c ( x , g o [ i + 1 ] ) ) f [ i + 1 ] [ x ] [ g o [ i + 1 ] ] [ z ] = m i n ( f [ i ] [ x ] [ y ] [ z ] + c ( y , g o [ i + 1 ] ) ) f [ i + 1 ] [ x ] [ y ] [ g o [ i + 1 ] ] = m i n ( f [ i ] [ x ] [ y ] [ z ] + c ( z , g o [ i + 1 ] ) ) f[i+1][go[i+1]][y][z]=min(f[i][x][y][z]+c(x,go[i+1]))\\ f[i+1][x][go[i+1]][z]=min(f[i][x][y][z]+c(y,go[i+1]))\\ f[i+1][x][y][go[i+1]]=min(f[i][x][y][z]+c(z,go[i+1])) f[i+1][go[i+1]][y][z]=min(f[i][x][y][z]+c(x,go[i+1]))f[i+1][x][go[i+1]][z]=min(f[i][x][y][z]+c(y,go[i+1]))f[i+1][x][y][go[i+1]]=min(f[i][x][y][z]+c(z,go[i+1]))

这个算法的时空复杂度为 O ( n l 3 ) O(nl^3) O(nl3),TLE+MLE.

我们发现,当一个状态 f [ i ] f[i] f[i]是有意义的情况下,必定有一个人的位置为 g o [ i ] go[i] go[i].而直到三个人的坐标不需要知道顺序,所以我们的状态可以简化成 f [ i ] [ x ] [ y ] f[i][x][y] f[i][x][y]表示走过前 i i i个给定坐标,有一个人的坐标为 x x x,有一个人的坐标为 y y y,有一个人的坐标为 g o [ i ] go[i] go[i]即可.

那么我们设 g o [ 0 ] go[0] go[0] 3 3 3,然后初始化 f [ 0 ] [ 1 ] [ 2 ] = f [ 0 ] [ 2 ] [ 1 ] = 0 f[0][1][2]=f[0][2][1]=0 f[0][1][2]=f[0][2][1]=0.

方程如同上面,分别推断三个情况可以得出:
f [ i + 1 ] [ x ] [ y ] = m i n ( f [ i ] [ x ] [ y ] + c ( g o [ i ] , g o [ i + 1 ] ) ) f [ i + 1 ] [ g o [ i ] ] [ y ] = m i n ( f [ i + 1 ] [ x ] [ y ] + c ( x , g o [ i + 1 ] ) ) f [ i + 1 ] [ x ] [ g o [ i ] ] = m i n ( f [ i + 1 ] [ x ] [ y ] + c ( y , g o [ i + 1 ] ) ) f[i+1][x][y]=min(f[i][x][y]+c(go[i],go[i+1]))\\ f[i+1][go[i]][y]=min(f[i+1][x][y]+c(x,go[i+1]))\\ f[i+1][x][go[i]]=min(f[i+1][x][y]+c(y,go[i+1])) f[i+1][x][y]=min(f[i][x][y]+c(go[i],go[i+1]))f[i+1][go[i]][y]=min(f[i+1][x][y]+c(x,go[i+1]))f[i+1][x][go[i]]=min(f[i+1][x][y]+c(y,go[i+1]))

那么这道题其实就这样可以AC了,时间复杂度 O ( n l 2 ) O(nl^2) O(nl2),空间复杂度 O ( n l 2 ) O(nl^2) O(nl2)若加上滚动数组可以进一步优化空间复杂度为 O ( l 2 ) O(l^2) O(l2).

代码如下:

#include<bits/stdc++.h>
  using namespace std;
#define Abigail inline void
const int L=200,N=1000;
const int INF=(1<<30)-1;
int l,dis[L+9][L+9];
int n,go[N+9];
int ans,f[N+9][L+9][L+9];
void getmin(int &a,int b){
  a=a<b?a:b;
}
Abigail into(){
  scanf("%d%d",&l,&n);
  for (int i=1;i<=l;i++)
    for (int j=1;j<=l;j++)
      scanf("%d",&dis[i][j]);
  for (int i=1;i<=n;i++)
    scanf("%d",&go[i]);
}
Abigail work(){
  for (int i=0;i<=N+1;i++)
    for (int j=0;j<=L+1;j++)
      for (int k=0;k<=L+1;k++)
        f[i][j][k]=INF;
  int x,y;
  go[0]=3;
  f[0][1][2]=0;f[0][2][1]=0;
  for (int i=0;i<n;i++)
    for (int j=1;j<=l;j++)
      for (int k=1;k<=l;k++){
        x=go[i];y=go[i+1];
        if (j^y&&k^y&&j^k) getmin(f[i+1][j][k],f[i][j][k]+dis[x][y]);
        if (x^y&&k^y&&x^k) getmin(f[i+1][x][k],f[i][j][k]+dis[j][y]);
        if (x^y&&j^y&&x^j) getmin(f[i+1][j][x],f[i][j][k]+dis[k][y]);
      }
  ans=INF;
  for (int i=1;i<=l;i++)
    for (int j=1;j<=l;j++)
      getmin(ans,f[n][i][j]);
}
Abigail outo(){
  printf("%d\n",ans);
}
int main(){
  into();
  work();
  outo();
  return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值