题目:luogu5664.
题目大意:给定一个
n
n
n行
m
m
m列的矩阵
a
i
,
j
a_{i,j}
ai,j,选出一些位置满足:
1.至少选出一个位置.
2.每行只选一个数.
3.每一列选的位置数不能超过选的总位置数的一半.
求所有方案选出的数的乘积的和,不算一个都不选的方案.
1
≤
n
≤
100
,
1
≤
m
≤
2000
1\leq n\leq 100,1\leq m\leq 2000
1≤n≤100,1≤m≤2000,答案对
998244353
998244353
998244353取模.
首先直接计算并不容易,所以考虑用满足 1 , 2 1,2 1,2的所有方案减去满足 1 , 2 1,2 1,2但不满足 3 3 3的方案.
满足
1
,
2
1,2
1,2的总方案很好求,我们可以直接用一个线性DP解决这个问题.即设
f
[
i
]
f[i]
f[i]表示前
i
i
i行的总方案,那么有:
f
[
i
]
=
(
1
+
∑
j
=
1
m
a
i
,
j
)
f
[
i
−
1
]
f[i]=\left(1+\sum_{j=1}^{m}a_{i,j}\right)f[i-1]
f[i]=(1+j=1∑mai,j)f[i−1]
考虑对于每个不满足 3 3 3的方案,如果某一列选出的位置数超过一半,则不可能有其它列超过一半,所以暴力枚举是哪一列超过了一半.
接下来,假设超过一半的是第
p
p
p列,很容易想到一个DP状态,设
f
[
i
]
[
j
]
[
k
]
f[i][j][k]
f[i][j][k]表示前
i
i
i行,其中第
p
p
p列选了
j
j
j行,不是第
p
p
p列选了
k
k
k行,那么有:
f
[
i
]
[
j
]
[
k
]
=
f
[
i
−
1
]
[
j
]
[
k
]
+
a
i
,
p
f
[
i
−
1
]
[
j
−
1
]
[
k
]
+
(
∑
t
=
1
m
a
i
,
t
−
a
i
,
p
)
f
[
i
−
1
]
[
j
]
[
k
−
1
]
f[i][j][k]=f[i-1][j][k]+a_{i,p}f[i-1][j-1][k]+\left(\sum_{t=1}^{m}a_{i,t}-a_{i,p}\right)f[i-1][j][k-1]
f[i][j][k]=f[i−1][j][k]+ai,pf[i−1][j−1][k]+(t=1∑mai,t−ai,p)f[i−1][j][k−1]
时间复杂度 O ( m n 3 ) O(mn^{3}) O(mn3),可以获得84pts.
考虑如何优化这个DP过程,容易发现我们并不需要关心第
p
p
p列和不是第
p
p
p列选的具体数量,只要知道它们的大小关系即可,所以设
f
[
i
]
[
j
]
f[i][j]
f[i][j]表示前
i
i
i行,其中第
p
p
p列比其他列多选了
j
j
j行的方案数,那么有:
f
[
i
]
[
j
]
=
f
[
i
−
1
]
[
j
]
+
a
i
,
p
f
[
i
−
1
]
[
j
−
1
]
+
(
∑
t
=
1
m
a
i
,
t
−
a
i
,
p
)
f
[
i
−
1
]
[
j
+
1
]
f[i][j]=f[i-1][j]+a_{i,p}f[i-1][j-1]+\left(\sum_{t=1}^{m}a_{i,t}-a_{i,p}\right)f[i-1][j+1]
f[i][j]=f[i−1][j]+ai,pf[i−1][j−1]+(t=1∑mai,t−ai,p)f[i−1][j+1]
时间复杂度 O ( m n 2 ) O(mn^{2}) O(mn2),可以获得100pts.
代码如下(需要开O2):
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=100,M=2000,mod=998244353;
int add(int a,int b,int p=mod){return a+b>=p?a+b-p:a+b;}
int sub(int a,int b,int p=mod){return a-b<0?a-b+p:a-b;}
int mul(int a,int b,int p=mod){return (LL)a*b%p;}
void sadd(int &a,int b,int p=mod){a=add(a,b,p);}
void ssub(int &a,int b,int p=mod){a=sub(a,b,p);}
void smul(int &a,int b,int p=mod){a=mul(a,b,p);}
int n,m,a[N+9][M+9];
void into(){
scanf("%d%d",&n,&m);
for (int i=1;i<=n;++i)
for (int j=1;j<=m;++j){
scanf("%d",&a[i][j]);
sadd(a[i][0],a[i][j]);
}
}
int ans;
void Get_ans(){
ans=1;
for (int i=1;i<=n;++i) sadd(ans,mul(ans,a[i][0]));
ssub(ans,1);
}
int dp[2][N*2+9],old,now;
void Get_dp(int p){
old=1;now=0;
for (int i=0;i<=n<<1;++i) dp[now][i]=0;
dp[now][n]=1;
for (int i=1;i<=n;++i){
old^=1;now^=1;
for (int j=0;j<=n<<1;++j){
dp[now][j]=dp[old][j];
if (j>0) sadd(dp[now][j],mul(a[i][p],dp[old][j-1]));
if (j<n<<1) sadd(dp[now][j],mul(sub(a[i][0],a[i][p]),dp[old][j+1]));
}
}
for (int i=n+1;i<=n<<1;++i) ssub(ans,dp[now][i]);
}
void work(){
Get_ans();
for (int i=1;i<=m;++i) Get_dp(i);
}
void outo(){
printf("%d\n",ans);
}
int main(){
into();
work();
outo();
return 0;
}