【CSP2019】洛谷5664 Emiya家的饭题解(容斥+DP)

题目:luogu5664.
题目大意:给定一个 n n n m m m列的矩阵 a i , j a_{i,j} ai,j,选出一些位置满足:
1.至少选出一个位置.
2.每行只选一个数.
3.每一列选的位置数不能超过选的总位置数的一半.
求所有方案选出的数的乘积的和,不算一个都不选的方案.
1 ≤ n ≤ 100 , 1 ≤ m ≤ 2000 1\leq n\leq 100,1\leq m\leq 2000 1n100,1m2000,答案对 998244353 998244353 998244353取模.

首先直接计算并不容易,所以考虑用满足 1 , 2 1,2 1,2的所有方案减去满足 1 , 2 1,2 1,2但不满足 3 3 3的方案.

满足 1 , 2 1,2 1,2的总方案很好求,我们可以直接用一个线性DP解决这个问题.即设 f [ i ] f[i] f[i]表示前 i i i行的总方案,那么有:
f [ i ] = ( 1 + ∑ j = 1 m a i , j ) f [ i − 1 ] f[i]=\left(1+\sum_{j=1}^{m}a_{i,j}\right)f[i-1] f[i]=(1+j=1mai,j)f[i1]

考虑对于每个不满足 3 3 3的方案,如果某一列选出的位置数超过一半,则不可能有其它列超过一半,所以暴力枚举是哪一列超过了一半.

接下来,假设超过一半的是第 p p p列,很容易想到一个DP状态,设 f [ i ] [ j ] [ k ] f[i][j][k] f[i][j][k]表示前 i i i行,其中第 p p p列选了 j j j行,不是第 p p p列选了 k k k行,那么有:
f [ i ] [ j ] [ k ] = f [ i − 1 ] [ j ] [ k ] + a i , p f [ i − 1 ] [ j − 1 ] [ k ] + ( ∑ t = 1 m a i , t − a i , p ) f [ i − 1 ] [ j ] [ k − 1 ] f[i][j][k]=f[i-1][j][k]+a_{i,p}f[i-1][j-1][k]+\left(\sum_{t=1}^{m}a_{i,t}-a_{i,p}\right)f[i-1][j][k-1] f[i][j][k]=f[i1][j][k]+ai,pf[i1][j1][k]+(t=1mai,tai,p)f[i1][j][k1]

时间复杂度 O ( m n 3 ) O(mn^{3}) O(mn3),可以获得84pts.

考虑如何优化这个DP过程,容易发现我们并不需要关心第 p p p列和不是第 p p p列选的具体数量,只要知道它们的大小关系即可,所以设 f [ i ] [ j ] f[i][j] f[i][j]表示前 i i i行,其中第 p p p列比其他列多选了 j j j行的方案数,那么有:
f [ i ] [ j ] = f [ i − 1 ] [ j ] + a i , p f [ i − 1 ] [ j − 1 ] + ( ∑ t = 1 m a i , t − a i , p ) f [ i − 1 ] [ j + 1 ] f[i][j]=f[i-1][j]+a_{i,p}f[i-1][j-1]+\left(\sum_{t=1}^{m}a_{i,t}-a_{i,p}\right)f[i-1][j+1] f[i][j]=f[i1][j]+ai,pf[i1][j1]+(t=1mai,tai,p)f[i1][j+1]

时间复杂度 O ( m n 2 ) O(mn^{2}) O(mn2),可以获得100pts.

代码如下(需要开O2):

#include<bits/stdc++.h>
using namespace std;

typedef long long LL;

const int N=100,M=2000,mod=998244353;

int add(int a,int b,int p=mod){return a+b>=p?a+b-p:a+b;}
int sub(int a,int b,int p=mod){return a-b<0?a-b+p:a-b;}
int mul(int a,int b,int p=mod){return (LL)a*b%p;}
void sadd(int &a,int b,int p=mod){a=add(a,b,p);}
void ssub(int &a,int b,int p=mod){a=sub(a,b,p);}
void smul(int &a,int b,int p=mod){a=mul(a,b,p);} 

int n,m,a[N+9][M+9];

void into(){
  scanf("%d%d",&n,&m);
  for (int i=1;i<=n;++i)
    for (int j=1;j<=m;++j){
      scanf("%d",&a[i][j]);
      sadd(a[i][0],a[i][j]);
	}
}

int ans;

void Get_ans(){
  ans=1;
  for (int i=1;i<=n;++i) sadd(ans,mul(ans,a[i][0]));
  ssub(ans,1);
}

int dp[2][N*2+9],old,now;

void Get_dp(int p){
  old=1;now=0;
  for (int i=0;i<=n<<1;++i) dp[now][i]=0;
  dp[now][n]=1;
  for (int i=1;i<=n;++i){
  	old^=1;now^=1;
  	for (int j=0;j<=n<<1;++j){
  	  dp[now][j]=dp[old][j];
  	  if (j>0) sadd(dp[now][j],mul(a[i][p],dp[old][j-1]));
  	  if (j<n<<1) sadd(dp[now][j],mul(sub(a[i][0],a[i][p]),dp[old][j+1]));
  	}
  }
  for (int i=n+1;i<=n<<1;++i) ssub(ans,dp[now][i]);
}

void work(){
  Get_ans();
  for (int i=1;i<=m;++i) Get_dp(i);
}

void outo(){
  printf("%d\n",ans);
}

int main(){
  into();
  work();
  outo();
  return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值