题目:BZOJ4326.
题目大意:给定一棵树以及
m
m
m条路径,现在可以把一条边的边权设成0,问这
m
m
m条路径中边权和最大的路径最小是多少.
1
≤
n
,
m
≤
3
∗
1
0
5
1\leq n,m\leq 3*10^5
1≤n,m≤3∗105.
感觉挺套路的一道题,最初想法是直接暴力枚举删那条边然后优化一下来着,发现好像没法优化.
后来想了想二分答案,即二分最大路径最小是多少,然后把所有边权和大于这个值的路径全部找出来,求一下这些路径的并,然后看路径并上的最大边权是多少.
考虑如何处理路径的并,直接把每条边的边权放到儿子上,然后对于每条路径,把路径上所有点 + 1 +1 +1,找到为路径数量的点中点权的最大值即可.
路径 + 1 +1 +1通过树上差分实现,预处理每条路径的LCA即可 O ( n log n ) O(n\log n) O(nlogn).
代码如下:
#include<bits/stdc++.h>
using namespace std;
#define Abigail inline void
typedef long long LL;
const int N=300000,C=19,INF=(1<<30)-1;
int n,m,ans=INF;
struct side{
int y,next,v;
}e[N*2+9];
int lin[N+9],top;
void ins(int x,int y,int v){
e[++top].y=y;e[top].v=v;
e[top].next=lin[x];
lin[x]=top;
}
int v[N+9],gr[N+9][C+1],deep[N+9],sum[N+9];
void dfs(int k,int fa){
deep[k]=deep[fa]+1;
gr[k][0]=fa;
for (int i=1;i<=C;++i)
gr[k][i]=gr[gr[k][i-1]][i-1];
for (int i=lin[k];i;i=e[i].next)
if (e[i].y^fa){
v[e[i].y]=e[i].v;
sum[e[i].y]=e[i].v+sum[k];
dfs(e[i].y,k);
}
}
int LCA(int x,int y){
if (deep[x]<deep[y]) swap(x,y);
for (int i=C;i>=0;--i)
if (deep[gr[x][i]]>=deep[y]) x=gr[x][i];
if (x==y) return x;
for (int i=C;i>=0;--i)
if (gr[x][i]^gr[y][i]) x=gr[x][i],y=gr[y][i];
return gr[x][0];
}
struct Chain{
int x,y,lca,sum;
}c[N+9];
int cnt[N+9];
void dfs_cnt(int k,int fa){
for (int i=lin[k];i;i=e[i].next)
if (e[i].y^fa){
dfs_cnt(e[i].y,k); //打错函数名WA了一发...
cnt[k]+=cnt[e[i].y];
}
}
bool check(int mid){
int num=0,ans=0,mx=0;
for (int i=1;i<=n;++i) cnt[i]=0;
for (int i=1;i<=m;++i)
if (c[i].sum>mid) ++cnt[c[i].x],++cnt[c[i].y],cnt[c[i].lca]-=2,++num,mx=max(mx,c[i].sum);
if (cnt==0) return 1;
dfs_cnt(1,0);
for (int i=1;i<=n;++i)
if (cnt[i]==num) ans=max(ans,v[i]);
return mid>=mx-ans;
}
Abigail into(){
scanf("%d%d",&n,&m);
int x,y,v;
for (int i=1;i<n;++i){
scanf("%d%d%d",&x,&y,&v);
ins(x,y,v);ins(y,x,v);
}
for (int i=1;i<=m;++i)
scanf("%d%d",&c[i].x,&c[i].y);
}
Abigail work(){
dfs(1,0);
for (int i=1;i<=m;++i){
c[i].lca=LCA(c[i].x,c[i].y);
c[i].sum=sum[c[i].x]+sum[c[i].y]-2*sum[c[i].lca];
}
for (int i=29;i>=0;--i)
if (check(ans-(1<<i))) ans-=1<<i;
}
Abigail outo(){
printf("%d\n",ans);
}
int main(){
into();
work();
outo();
return 0;
}