【NOIP2015】BZOJ4326 运输计划题解(二分+LCA+树上差分)

题目:BZOJ4326.
题目大意:给定一棵树以及 m m m条路径,现在可以把一条边的边权设成0,问这 m m m条路径中边权和最大的路径最小是多少.
1 ≤ n , m ≤ 3 ∗ 1 0 5 1\leq n,m\leq 3*10^5 1n,m3105.

感觉挺套路的一道题,最初想法是直接暴力枚举删那条边然后优化一下来着,发现好像没法优化.

后来想了想二分答案,即二分最大路径最小是多少,然后把所有边权和大于这个值的路径全部找出来,求一下这些路径的并,然后看路径并上的最大边权是多少.

考虑如何处理路径的并,直接把每条边的边权放到儿子上,然后对于每条路径,把路径上所有点 + 1 +1 +1,找到为路径数量的点中点权的最大值即可.

路径 + 1 +1 +1通过树上差分实现,预处理每条路径的LCA即可 O ( n log ⁡ n ) O(n\log n) O(nlogn).

代码如下:

#include<bits/stdc++.h>
  using namespace std;
  
#define Abigail inline void
typedef long long LL;

const int N=300000,C=19,INF=(1<<30)-1;

int n,m,ans=INF;
struct side{
  int y,next,v;
}e[N*2+9];
int lin[N+9],top;

void ins(int x,int y,int v){
  e[++top].y=y;e[top].v=v;
  e[top].next=lin[x];
  lin[x]=top;
}

int v[N+9],gr[N+9][C+1],deep[N+9],sum[N+9];

void dfs(int k,int fa){
  deep[k]=deep[fa]+1;
  gr[k][0]=fa;
  for (int i=1;i<=C;++i)
    gr[k][i]=gr[gr[k][i-1]][i-1];
  for (int i=lin[k];i;i=e[i].next)
    if (e[i].y^fa){
      v[e[i].y]=e[i].v;
      sum[e[i].y]=e[i].v+sum[k];
      dfs(e[i].y,k);
	}
}

int LCA(int x,int y){
  if (deep[x]<deep[y]) swap(x,y);
  for (int i=C;i>=0;--i)
    if (deep[gr[x][i]]>=deep[y]) x=gr[x][i];
  if (x==y) return x;
  for (int i=C;i>=0;--i)
    if (gr[x][i]^gr[y][i]) x=gr[x][i],y=gr[y][i];
  return gr[x][0];
}

struct Chain{
  int x,y,lca,sum;
}c[N+9];
int cnt[N+9];

void dfs_cnt(int k,int fa){
  for (int i=lin[k];i;i=e[i].next)
    if (e[i].y^fa){
      dfs_cnt(e[i].y,k);      //打错函数名WA了一发...
      cnt[k]+=cnt[e[i].y];
	}
}

bool check(int mid){
  int num=0,ans=0,mx=0;
  for (int i=1;i<=n;++i) cnt[i]=0;
  for (int i=1;i<=m;++i)
    if (c[i].sum>mid) ++cnt[c[i].x],++cnt[c[i].y],cnt[c[i].lca]-=2,++num,mx=max(mx,c[i].sum);
  if (cnt==0) return 1;
  dfs_cnt(1,0);
  for (int i=1;i<=n;++i)
    if (cnt[i]==num) ans=max(ans,v[i]);
  return mid>=mx-ans;
}

Abigail into(){
  scanf("%d%d",&n,&m);
  int x,y,v;
  for (int i=1;i<n;++i){
  	scanf("%d%d%d",&x,&y,&v);
  	ins(x,y,v);ins(y,x,v);
  }
  for (int i=1;i<=m;++i)
    scanf("%d%d",&c[i].x,&c[i].y); 
}

Abigail work(){
  dfs(1,0);
  for (int i=1;i<=m;++i){
    c[i].lca=LCA(c[i].x,c[i].y);
    c[i].sum=sum[c[i].x]+sum[c[i].y]-2*sum[c[i].lca];
  }
  for (int i=29;i>=0;--i)
    if (check(ans-(1<<i))) ans-=1<<i;
}

Abigail outo(){
  printf("%d\n",ans);
}

int main(){
  into();
  work();
  outo();
  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值