Day2019.3.19 USACO原题模拟赛总结

T1:[USACO18FEB]Rest Stops - luogu4266.
题目大意:给定一条长度为为 L L L直线与 n n n个点,每个点有坐标 x i x_i xi,美味值 c i c_i ci.现在给定两个人F和B从开头出发,F与B的速度分别为f,b秒每米,问B在不落后于F后能得到最大的美味值之和,其中在第 i i i个点停留 t t t秒可以得到的美味值为 t ∗ c i t*c_i tci.
1 ≤ L , c i , f , b ≤ 1 0 6 , 1 &lt; x i &lt; L , 1 ≤ n ≤ 1 0 5 1\leq L,c_i,f,b\leq 10^6,1&lt;x_i&lt;L,1\leq n\leq 10^5 1L,ci,f,b106,1<xi<L,1n105.

看到的第一眼想了DP,设 f [ i ] f[i] f[i]表示到第 i i i个点并在第 i i i个点吃草的最大美味值,那么可以得到转移方程:
f [ i ] = max ⁡ j = 0 i − 1 { f [ j ] + ( f − b ) c i ( x i − x j ) } = x i ( f − b ) c i + max ⁡ j = 0 i − 1 { f [ j ] − x j ( f − b ) c i } f[i]=\max_{j=0}^{i-1}\{f[j]+(f-b)c_i(x_i-x_j)\}=x_i(f-b)c_i+\max_{j=0}^{i-1}\{f[j]-x_j(f-b)c_i\} f[i]=j=0maxi1{f[j]+(fb)ci(xixj)}=xi(fb)ci+j=0maxi1{f[j]xj(fb)ci}

仔细一想可以斜率优化,发现自己不会,又想到这个等级的题目怎么会是斜率优化,于是果断重新思考.

发现要吃草的话肯定吃越美味的越好,于是想到给整个序列排序,然后尽量能吃美味值大的就吃美味值大的.

时间复杂度 O ( n log ⁡ n ) O(n\log n) O(nlogn),其中瓶颈在于排序.

代码如下:

#include<bits/stdc++.h>
  using namespace std;

#define Abigail inline void
typedef long long LL;

const int N=100000;

struct node{
  int x;
  LL c;
}a[N+9];
int l,n,now;
LL ans;

bool cmp(const node &a,const node &b){return a.c>b.c;}

Abigail into(){
  int x,y;
  scanf("%d%d%d%d",&l,&n,&x,&y);
  y=abs(y-x);
  for (int i=1;i<=n;++i){
    scanf("%d%lld",&a[i].x,&a[i].c);
    a[i].c*=y;
  }
}

Abigail work(){
  sort(a+1,a+1+n,cmp);
  now=0;ans=0;
  for (int i=1;i<=n;++i)
    if (now<=a[i].x){
      ans+=LL(a[i].x-now)*a[i].c;
      now=a[i].x;
    }
}

Abigail outo(){
  printf("%lld\n",ans);
}

int main(){
  //freopen("reststops.in","r",stdin);
  //freopen("reststops.out","w",stdout);
  into();
  work();
  outo();
  return 0;
}

T2:[USACO18FEB]Snow Boots S - luogu4265.
题目大意:给定 n n n块地砖 b b b双鞋,第 i i i双鞋可以承受 s i s_i si的厚度并以此走至多 d i d_i di的距离》问最少只要用前几双鞋就可以从 1 1 1走到 n n n,注意鞋必须按顺序串,并且穿过后不能再穿.
1 ≤ n , b ≤ 250 1\leq n,b\leq 250 1n,b250.

考场调用了负数下标真是难受啊…

很容易想到一个比较大力的DP,设 f [ i ] [ j ] f[i][j] f[i][j]表示到第 i i i块地砖正在穿第 j j j双鞋是否可行,那么容易得到方程:
f [ i ] [ j ] = f [ k ] [ j ] ∣ ∣ f [ i ] [ l ] &ThinSpace;&ThinSpace; ( k + d j ≥ i , 1 ≤ l &lt; j ) f[i][j]=f[k][j]||f[i][l]\,\,(k+d_j\geq i,1\leq l&lt;j) f[i][j]=f[k][j]f[i][l](k+dji,1l<j)

时间复杂度 O ( n 3 ) O(n^3) O(n3),代码如下:

#include<bits/stdc++.h>
  using namespace std;

#define Abigail inline void
typedef long long LL;

const int N=250;

int n,m,f[N+9],s[N+9],d[N+9],ans,dp[N+9][N+9];

Abigail into(){
  scanf("%d%d",&n,&m);
  for (int i=1;i<=n;++i)
    scanf("%d",&f[i]);
  for (int i=1;i<=m;++i)
    scanf("%d%d",&s[i],&d[i]);
}

Abigail work(){
  for (int i=1;i<=n;++i)
    for (int j=0;j<=m;++j){
      if (i==1&&j==0) dp[i][j]=1;
      if (s[j]<f[i]) continue;
      for (int k=0;k<j;++k)
        dp[i][j]|=dp[i][k];
      for (int k=max(i-d[j],0);k<i;++k)
        dp[i][j]|=dp[k][j];
    }
  while (!dp[n][ans]) ++ans;
}

Abigail outo(){
  printf("%d\n",ans-1);
}

int main(){
  //freopen("snowboots.in","r",stdin);
  //freopen("snowboots.out","w",stdout);
  into();
  work();
  outo();
  return 0;
}

T3:[USACO18FEB]Teleportation S - luogu4264.
题目大意:给定 n n n a i , b i a_i,b_i ai,bi,要求一个 x x x使得 ∑ i = 1 n min ⁡ ( ∣ a i − b i ∣ , ∣ a i ∣ + ∣ b i − x ∣ ) \sum_{i=1}^{n}\min(|a_i-b_i|,|a_i|+|b_i-x|) i=1nmin(aibi,ai+bix)最小.
− 1 0 8 ≤ a i , b i ≤ 1 0 8 , 1 ≤ n ≤ 1 0 5 -10^8\leq a_i,b_i\leq 10^8,1\leq n\leq 10^5 108ai,bi108,1n105.

考虑对于每一组 a i , b i a_i,b_i ai,bi都对应一个函数 y = min ⁡ ( ∣ a i − b i ∣ , ∣ a i ∣ + ∣ b i − x ∣ ) y=\min(|a_i-b_i|,|a_i|+|b_i-x|) y=min(aibi,ai+bix),很容易发现这个函数会是这样的:

考虑对于每一个函数求出它的三个转折点 l i , m i , r i l_i,m_i,r_i li,mi,ri,其中用 x i x_i xi代替 l i l_i li r i r_i ri,很容易发现:
∣ b i − m i ∣ = 0 , m i = b i ∣ a i − b i ∣ = ∣ a i ∣ + ∣ b i − x i ∣ ∣ a i − b i ∣ − ∣ a i ∣ = ∣ b i − x i ∣ |b_i-m_i|=0,m_i=b_i\\ |a_i-b_i|=|a_i|+|b_i-x_i|\\ |a_i-b_i|-|a_i|=|b_i-x_i|\\ bimi=0,mi=biaibi=ai+bixiaibiai=bixi

c i = ∣ a i − b i ∣ − ∣ a i ∣ c_i=|a_i-b_i|-|a_i| ci=aibiai,分情况讨论:
1. b i ≥ x i b_i\geq x_i bixi,那么 c i = b i − x i c_i=b_i-x_i ci=bixi,即 l i = b i − c i l_i=b_i-c_i li=bici.
2. b i &lt; x i b_i&lt; x_i bi<xi,那么 c i = x i − b i c_i=x_i-b_i ci=xibi,即 r i = b i + c i r_i=b_i+c_i ri=bi+ci.

那么我们就可以轻松求出三个转折点了.

继续考虑这有什么用,我们发现一个点有可能成为最优的 x x x仅当它是任意一个函数的转折点或者这些函数均为出现转折,并且很容易发现转折后的斜率必定为 ± 1 \pm 1 ±1 0 0 0,所以我们暴力把所以转折点放入一个map里并记录当前的斜率之和,就可以 O ( n log ⁡ n ) O(n\log n) O(nlogn)解决这道题了.

代码如下:

#include<bits/stdc++.h>
  using namespace std;

#define Abigail inline void
typedef long long LL;
#define mapit map<LL,LL>::iterator

const int N=100000;

int n;
map<LL,LL>s;
LL sum,ans;

Abigail into(){
  scanf("%d",&n);
  LL a,b,c;
  for (int i=1;i<=n;++i){
  	scanf("%lld%lld",&a,&b);
  	c=abs(a-b);sum+=c;c-=abs(a);
  	if (c<0) continue;
	s[b]+=2;
	--s[b+c];--s[b-c];
  }
}

Abigail work(){
  ans=sum;
  LL lx=s.begin()->first;
  int x,now=0;
  for (mapit it=s.begin();it!=s.end();++it){
    x=it->first;
    sum+=now*(x-lx);lx=x;now+=it->second;
    ans=min(ans,sum);
  }
}

Abigail outo(){
  printf("%lld\n",ans);
}

int main(){
  //freopen("teleport.in","r",stdin);
  //freopen("teleport.out","w",stdout); 
  into();
  work();
  outo();
  return 0;
}

T4:[USACO18FEB]Directory Traversal - luogu4268.
题目:Bessie在牛棚的电脑里用 n n n个文件夹储存了她所有珍贵的文件,比如:

bessie/
  folder1/
    file1
    folder2/
      file2
  folder3/
    file3
  file4

只有一个“顶层”的文件夹,叫做bessie.
Bessie可以浏览任何一个她想要访问的文件夹.从一个给定的文件夹,每一个文件都可以通过一个“相对路径”被引用.在一个相对路径中,符号“…”指的是上级目录.如果Bessie在folder2中,她可以按下列路径引用这四个文件:

../file1
file2
../../folder3/file3
../../file4

Bessie想要选择一个文件夹,使得从该文件夹出发,对所有文件的相对路径的长度之和最小.
1 ≤ n ≤ 1 0 5 1\leq n\leq 10^5 1n105,所有字符串长度 ≤ 16 \leq 16 16.

考场把邻接表的数组开小了真是难受…

感觉比较套路,可以直接计算出以 1 1 1为给定文件夹时的长度和 f [ 1 ] f[1] f[1],然后通过这个来转移其它所有 f [ i ] f[i] f[i],这个用换根DP就可以实现了,时间复杂度为 O ( n ) O(n) O(n).

代码如下:

#include<bits/stdc++.h>
  using namespace std;

#define Abigail inline void
typedef long long LL;

const int N=100000;
const LL INF=(1LL<<60)-1;

struct side{
  int y,next;
}e[N*2+9];
int lin[N+9],top;

void ins(int x,int y){
  e[++top].y=y;
  e[top].next=lin[x];
  lin[x]=top;
}

int siz[N+9],n,leaf[N+9],b[N+9];
LL ans[N+9],mn=INF;
char c[N+9];

void dfs1(int k,int fa){
  for (int i=lin[k];i;i=e[i].next)
    if (e[i].y^fa){
  	  dfs1(e[i].y,k);
      leaf[k]+=leaf[e[i].y];
    }
  if (k^1) ans[1]+=(LL)leaf[k]*siz[k];
}

void dfs2(int k,int fa){
  ans[k]=ans[fa]+3LL*(leaf[1]-leaf[k])-(LL)leaf[k]*siz[k];
  for (int i=lin[k];i;i=e[i].next)
    if (e[i].y^fa) dfs2(e[i].y,k);
}

Abigail into(){
  scanf("%d",&n);
  int m,y;
  for (int i=1;i<=n;++i){
  	scanf("%s%d",c+1,&m);
  	siz[i]=strlen(c+1);
  	if (m==0) leaf[i]=b[i]=1;
  	else{
  	  ++siz[i];
  	  for (int j=1;j<=m;++j){
  	    scanf("%d",&y);
  	    ins(i,y);ins(y,i);
	  }
  	}
  }
}

Abigail work(){
  dfs1(1,0);
  for (int i=lin[1];i;i=e[i].next)
    dfs2(e[i].y,1);
  for (int i=1;i<=n;++i)
    if (!b[i]) mn=min(mn,ans[i]);
}

Abigail outo(){
  printf("%lld\n",mn);
}

int main(){
  //freopen("dirtraverse.in","r",stdin);
  //freopen("dirtraverse.out","w",stdout);
  into();
  work();
  outo();
  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值