题目:
赫柏在绝域之门击败鲁卡斯后,从鲁卡斯身上掉落了一本高级技能书,赫柏打开后惊喜地发现这是一个早已失传的上古技能—禁忌雷炎。
该技能每次发动只需扣很少的精神值,而且输出也非常高。
具体魔法描述如下:
把地图抽象为一个二维坐标,技能发动者位于(0,0)位置。以技能发动者为中心,做一个半径为r的圆,满足r^2=S,如果敌人位于这个圆上,且位置为整点坐标,这个敌人将收到该技能的输出伤害。。
例如当S=25时,将有12个敌人受到该技能的输出伤害,如下图所示:
更厉害的是,禁忌雷炎可以通过改变魔法输入来控制S的大小,因此数学好的魔法师可以通过该技能攻击到更多的敌人。
赫柏想将这个技能学会并成为自己的主技能,可数学是他的硬伤,所以他请求你为他写一个程序,帮帮他吧,没准他就把禁忌雷炎与你分享了 : )
输入描述:
多组测试数据,请处理到文件结束。
对于每组测试数据,只包含一个整数S。
保证:
1<=S<=2,000,000,000。
输出描述:
输出一个整数,代表受到禁忌雷炎伤害的敌人数量。
实例:
输入示例:
25
3
输出示例
12
0
分析:
可以由上图看到所有的红点都是在整数点位置上,也就是说本题实际上求得是在半径2 = S的圆上沿着圆周寻找那些恰好经过整数点的位置,并求其总个数。
并且这是个圆心位于原点上的圆,因此只需要求一个象限上的点最后 *4 即可,这里需要特别注意,需要注意一些可能位于坐标轴上的点,防止重复计算。
代码实现:
#include<stdio.h>
#include<iostream>
#include<string>
#include<math.h>
using namespace std;
int main(){
int num = 0; //用来统计总个数
int S; //半径的平方
while(cin>>S){ //直到输入结束
num = 0;
int a = sqrt(S);
for(int i = 1;i <= a;i++){ //这里为了防止重复计算坐标轴上的点,需要从1开始遍历
int k = S-i*i;
int p = (int)sqrt(k); //注意这一步 int的强制转化
if(p*p==k)
num++;
}
cout<<num * 4<<endl;
}
return 0;
}
自我总结:
其实这题我最开始的做法并不是此文中代码那样的简洁,而是比较繁琐,而且也未能通过,借鉴了他人写的代码才有了现在这份代码,感觉自己代码能力其实是非常弱的,还需要继续努力。2018.10.12