- 博客(4)
- 资源 (3)
- 收藏
- 关注
原创 猴子?狒狒?傻傻分不清楚——制作tfrecord数据集并利用卷积神经网络训练实例
去年年底学习了深度学习的相关知识,但是寒假回来之后忘得也差不多了。。。为了巩固下所学知识,近期利用卷积神经网络做了一个小实例。卷积神经网络是一种多层神经网络,擅长处理图像特别是大图像的相关机器学习问题。卷积网络通过一系列方法,成功将数据量庞大的图像识别问题不断降维,最终使其能够被训练。为了测试卷积神经网络的性能,特地选择了猴子和狒狒这两种长得差不多的动物图片进行训练。【step1:数据准备】...
2019-02-24 16:54:21 1749 7
原创 机器学习——影响线性回归和逻辑回归拟合结果的一些问题及解决办法
在先前的两篇帖子中讨论了基本的线性回归和逻辑回归的问题,这些模型还比较理想,实际情况下样本数据的分布可能并没有这么完美,这个时候就会产生一系列的问题。1 非线性回归很多时候我们碰到的回归问题并不是线性的,而是非线性的。换句话说,我们的样本数据分布不是一条完美的直线,而是一条曲线。以之前线性回归的例子,如下图所示,样本数据的分布更符合一条曲线的形状。那么如何去拟合得到这样的曲线呢?在处理...
2018-11-02 13:35:37 3176
原创 机器学习——逻辑回归
1 简单介绍机器学习中的逻辑回归(Logistic Regression)是解决分类问题的基础模型,同线性回归一样,逻辑回归主要的目标也是拟合一条曲线。为了通俗的解释逻辑回归问题,我们下面看一个简单的二分类问题。如图所示,假设我通过数字图像处理技术分割出橘子和柠檬的区域,但我并不知道如何判断是橘子还是柠檬,所以我采集了一些样本数据,分别对它们的圆度(如果是一个完美的圆,它的圆度就是1,...
2018-10-14 11:09:09 285
原创 机器学习——线性回归
机器学习中的监督学习分为回归和分类,而线性回归(Linear Regreesion)是回归问题中最基础的模型。所谓线性回归,简单的说就是在假设特征满足线性关系的前提下,通过样本数据的来拟合出一条直线,然后用该直线来预测输入的结果。这里拟合所得的曲线我们叫做模型,而拟合的整个过程叫做训练。下面用一个简单的例子来阐述线性回归的过程。假设通过调研我们得到了一组住房面积以及对应房价的数据,在坐标轴...
2018-10-03 23:48:39 392
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人