题意
给出一棵树,每次询问删掉一些子树问剩下的点到某个点P的距离和,距离最大值,距离最小值。
题解
求出
root
,也就是
1
号节点的
考虑
1
的儿子
那么对每个节点都如此操作,做成一棵有
需要注意的是,这道题区间增减的标记并不需要像陈立杰《可持久化数据结构研究》中写的那样下传标记,因为操作单一。否则浪费空间(我是不知道为啥RE)。
对于每次询问,所给的子树都对应一些 dfs 序区间,我们把这些区间取并,然后取补集。这一步可以 sort 一下,这样整个序会有 K+1 段区间是合法的。 ∑K=200000 我们对于每一段区间进行询问即可。
效率: O((N+Q+∑K)logN)
代码
/****************************************\
* Author : ztx
* Title : E - Boss Bo
* ALG : 主席树,区间修改
* CMT : 主席树的具体实现中在一个区间打了标记并不用再把标记下传。
也就是所谓的静态标记。查询过程中直接加上区间以及上层的lazy们代表的值就可以了
* Time :
\****************************************/
#include <cstdio>
#define Rep(i,l,r) for(i=(l);i<=(r);i++)
#define rep(i,l,r) for(i=(l);i< (r);i++)
#define Rev(i,r,l) for(i=(r);i>=(l);i--)
#define rev(i,r,l) for(i=(r);i> (l);i--)
typedef long long ll ;
typedef double lf ;
int CH , NEG ;
template <typename TP>inline void read(TP& ret) {
ret = NEG = 0 ; while (CH=getchar() , CH<'!') ;
if (CH == '-') NEG = true , CH = getchar() ;
while (ret = ret*10+CH-'0' , CH=getchar() , CH>'!') ;
if (NEG) ret = -ret ;
}
template <typename TP>inline void readc(TP& ret) {
while (ret=getchar() , ret<'!') ;
while (CH=getchar() , CH>'!') ;
}
template <typename TP>inline void reads(TP *ret) {
ret[0]=0;while (CH=getchar() , CH<'!') ;
while (ret[++ret[0]]=CH,CH=getchar(),CH>'!') ;
ret[ret[0]+1]=0;
}
#include <algorithm>
#define infi 0x7f7f7f7fLL
#define maxn 50010LL
int n, m, idx;
int in[maxn], out[maxn], dep[maxn];
int P, T, K;
ll ans;
/// Edges
#define nxt(p) e[1][p]
#define to(p) e[0][p]
int e[2][maxn<<1] , star[maxn] , tote ;
inline void AddEdge(int u,int v) {
tote ++ ; to(tote) = v ; nxt(tote) = star[u] ; star[u] = tote ;
}
/// The Tree
#define maxt 5000010LL
#define M (L+R)/2
struct node {
node *lc, *rc;
int sz, maxx, minn;
ll sum, lazy;
inline void maintain();
inline void add(ll);
}nodes[maxt], *rt[maxn]; int tott ;
inline node* newnode(int sz,int w = 0) {
nodes[++tott].sz = sz, nodes[tott].lazy = 0;
nodes[tott].sum = nodes[tott].maxx = nodes[tott].minn = w ;
return &nodes[tott] ;
}
inline node* copy(node *p) {
nodes[++tott] = *p; return &nodes[tott];
}
inline void node::maintain() {
sum = lc->sum + rc->sum + lazy*sz;
maxx = std::max(lc->maxx,rc->maxx) + lazy;
minn = std::min(lc->minn,rc->minn) + lazy;
}
inline void node::add(ll v) {
lazy += v, sum += v*sz, maxx += v, minn += v;
}
void build(node*&o,int L,int R) {
if (L == R) { o = newnode(1,dep[L]); return; } ;
o = newnode(R-L+1);
build(o->lc,L,M), build(o->rc,M+1,R);
o->maintain();
}
int ql, qr;
void insert(node*last,node*&o,int L,int R) {
o = copy(last);
if (ql<=L && R<=qr) { o->add(-1); return ; }
if (R<ql || L>qr) { o->add(1); return ; }
insert(last->lc,o->lc,L,M); insert(last->rc,o->rc,M+1,R);
o->maintain();
}
void query(node*o,int L,int R,ll lazys) {
if (ql<=L && R<=qr) {
if (T == 1) ans += o->sum+lazys*o->sz;
if (T == 2) ans = std::min(ans,o->minn+lazys);
if (T == 3) ans = std::max(ans,o->maxx+lazys);
return;
}
if (ql<=M) query(o->lc,L,M,lazys+o->lazy);
if (qr>M) query(o->rc,M+1,R,lazys+o->lazy);
}
/// dfs to build the tree 1
void dfs(int u,int fa,int d) {
in[u] = ++idx, dep[idx] = d;
for (int p = star[u]; p; p=nxt(p))
if (to(p)!=fa) dfs(to(p),u,d+1);
out[u] = idx;
}
void dfs(int u,int fa) {
for (int p = star[u]; p; p=nxt(p))
if (to(p)!=fa) {
ql = in[to(p)], qr = out[to(p)];
insert(rt[u],rt[to(p)],1,n);
dfs(to(p),u);
}
}
/// analyse the query
#define maxk 50010LL
struct Seg {
int l, r;
bool operator <(const Seg&b) const { return l < b.l; }
}s[maxk]; int top;
inline void work() {
int i, u, v;
Rep (i,1,n) star[i] = 0;
tote = idx = tott = 0;
rep (i,1,n)
read(u), read(v), AddEdge(u,v), AddEdge(v,u);
dfs(1,0,0);
build(rt[1],1,n);
dfs(1,0);
ans = 0;
while (m --> 0) {
read(K), read(P), read(T);
if (ans == -1) ans = 0;
P = ((ll)P+ans) % n + 1;
Rep (i,1,K) {
read(u);
s[i].l = in[u], s[i].r = out[u];
if (u == 1) ans = -1;
}
if (ans == -1) { puts("-1"); continue; }
top = 0;
if (K) {
std::sort(s+1,s+K+1);
top = 1;
Rep (i,2,K)
if (s[i].l > s[top].r) s[++top] = s[i];
}
s[0].r = 0;
s[top+1].l = n+1;
ans = (T==2?infi:0) ;
Rep (i,0,top) {
ql = s[i].r+1, qr = s[i+1].l-1 ;
if (ql > qr) continue;
query(rt[P],1,n,0);
}
printf("%lld\n", ans);
}
}
int main() {
// #define READ
#ifdef READ
freopen(".in" ,"r",stdin ) ;
freopen(".out","w",stdout) ;
#endif
while (scanf("%d%d",&n,&m)!=EOF) work() ;
#ifdef READ
fclose(stdin) ; fclose(stdout) ;
#else
getchar() ; getchar() ;
#endif
return 0 ;
}