约瑟夫环

【参考1:约瑟夫问题-维基百科】(https://en.wikipedia.org/wiki/Josephus_problem)
【参考2:约瑟夫环问题详解】(http://blog.csdn.net/tingyun_say/article/details/52343897)
【参考3:约瑟夫环问题】(http://blog.csdn.net/kangroger/article/details/39254619)
###1.背景:
约瑟夫问题是以弗拉维奥·约瑟夫命名的,它是1世纪的一名犹太历史学家。他在自己的日记中写道,他和他的40个战友被罗马军队包围在洞中。他们讨论是自杀还是被俘,最终决定自杀,并以抽签的方式决定谁杀掉谁。约瑟夫斯和另外一个人是最后两个留下的人。约瑟夫斯说服了那个人,他们将向罗马军队投降,不再自杀。约瑟夫斯把他的存活归因于运气或天意,他不知道是哪一个。
###2.条件:
有n个囚犯站成一个圆圈,准备处决。首先从一个人开始,越过 k-2个人(因为第一个人已经被越过),并杀掉第k个人。接着,再越过 k-1个人(因为从下个人开始算第一个人1),并杀掉第k个人。这个过程沿着圆圈一直进行,直到最终只剩下一个人留下,这个人就可以继续活着。问题是,给定了 n和 k,一开始要站在什么地方才能避免被处决?
###3.通解:
基本思路就是建立一个单循环链表,从头开始经过step步后将此节点删除,然后从下一个节点在此开始此过程,直到只剩一个节点就结束,此时剩余节点即为存活的人,通解可以输出所有人先后死亡的序号

#include <iostream>
#include "stdlib.h"

using namespace std;

typedef struct node {
    int value;
    node *next;
}*pnode,tnode;

void joseph(pnode q,int step)
{
    pnode p = NULL;
    while(q->next != q)
    {
        for(int i = 1; i<step; i++) // 开始数人头
        {
            p = q;
            q = q->next;
        }
        cout<<q->value<<"号死亡"<<endl;
        p->next = q->next;
        free(q);
        q = p->next;
    }
    cout<<"最后存活的人为:"<<q->value<<endl;
}
void buildLinkList(pnode &head, int count)
{
    head = (pnode)malloc(sizeof(tnode));
    pnode p = head;
    head->value = 1;
    head->next = head;
    for(int i = 1; i<count;)
    {
        pnode tmp = (pnode)malloc(sizeof(tnode));
        tmp->value = ++i;
        p->next = tmp;
        p = tmp;
    }
    p->next = head;
}
int main()
{
    int count,step;
    cin>>count>>step;
    if(step == 1) { // 步数为1的情况
        cout<<"第"<<count<<"个人存活"<<endl;
    }else{          // 步数不为1的情况
        pnode head = NULL;
        buildLinkList(head,count); // 建立链表
        joseph(head,step);         // 解瑟夫问题
    }
    system("pause");
    return 0;
}

###4.特解:
适用于输出最后存活的人的序号

  • 1.当 k = 2 k=2 k=2,且 n = 2 x n=2^x n=2x时,最后存活的人为1号:

如果只有2个人,显然剩余的为1号
如果有4个人,第一轮除掉2 4,剩下1 3,3死,留下1
如果是8个人,先除去2 4 6 8,之后3 7,剩下1 5,除去5,又剩下1了

  • 2.当 k = 2 k=2 k=2,且 n ≠ 2 x n \neq2^x n̸=2x时:
    假设n = 9,这时候如图下
    这里写图片描述
    能看出来,我们干掉第一个人也就是2,之后就只剩下8个人了,又回到第一种情况上了,这时候我们需要的是找到当前的1号元素,即为3
    这里写图片描述
    易知最后3号存活

  • 3.数学推导解法:摘自Wiki百科,加上一些自己写的例子

我们将明确解出 k = 2 k=2 k=2 时的问题。对于 k ≠ 2 k\neq 2 k̸=2 的情况,我们在下面给出一个一般的解法。
f ( n ) f(n) f(n) 为一开始有 n n n 个人时生还者的位置(注意:最终的生还者只有一个)。

n = 8 n=8 n=8 1 &ThickSpace; 2 &ThickSpace; 3 &ThickSpace; 4 &ThickSpace; 5 &ThickSpace; 6 &ThickSpace; 7 &ThickSpace; 8 1 &ThickSpace; 2 &ThickSpace; 3 &ThickSpace; 4 &ThickSpace; 5 &ThickSpace; 6 &ThickSpace; 7 &ThickSpace; 8 \frac{1\;2\;3\;4\;5\;6\;7\;8}{1\;2\;3\;4\;5\;6\;7\;8} 1234567812345678,上方代表人编号,下方代表序号

走第一圈以后,所有偶数号码的人被杀。

n = 8 n=8 n=8,则第一圈2 4 6 8号死亡

再走第二圈,则新的第二、第四、……个人被杀

n = 8 n=8 n=8,则第一圈剩余 1 &ThickSpace; 3 &ThickSpace; 5 &ThickSpace; 7 1 &ThickSpace; 2 &ThickSpace; 3 &ThickSpace; 4 \frac{1\;3\;5\;7}{1\;2\;3\;4} 12341357 ,第二圈的偶数位即3 7死亡

第三圈……等等

就像没有第一圈一样。如果一开始有偶数个人,则第二圈时位置为 x x x 的人一开始在第 2 x − 1 2x-1 2x1 个位置。因此位置为 f ( 2 n ) f(2n) f(2n) 的人开始时的位置为 2 f ( n ) − 1 2f(n)-1 2f(n)1 。这便给出了以下的递推公式:
f ( 2 n ) = 2 f ( n ) − 1 f(2n)=2f(n)-1 f(2n)=2f(n)1,
如果一开始有奇数个人,则走了一圈以后,最终是号码为1的人被杀。于是同样地,再走第二圈时,新的第二、第四、……个人被杀,等等。在这种情况下,位置为 x x x 的人原先位置为 2 x + 1 2x+1 2x+1。这便给出了以下的递推公式:
f ( 2 n + 1 ) = 2 f ( n ) + 1 f(2n+1)=2f(n)+1 f(2n+1)=2f(n)+1,
如果我们把 n n n f ( n ) f(n) f(n) 的值列成表,我们可以看出一个规律:
这里写图片描述
从中可以看出, f ( n ) f(n) f(n) 是一个递增的奇数数列,每当n是2的幂时,便重新从 f ( n ) = 1 f(n)=1 f(n)=1 开始。因此,如果我们选择 m m m l l l ,使得 n = 2 m + l n=2^{m}+l n=2m+l 0 ≤ l &lt; 2 m 0\leq l&lt;2^{m} 0l<2m ,那么 f ( n ) = 2 ⋅ l + 1 f(n)=2\cdot l+1 f(n)=2l+1 。注意: 2 m 2^m 2m 是不超过 n n n 的最大幂,l是留下的量。

n = 7 , 7 = 4 + 3 , 4 = 2 2 , m = 2 , l = 3 , 则 f ( n ) = 2 ∗ 3 + 1 = 7 n=7,7 = 4 + 3,4 = 2^2,m = 2,l = 3,则f(n) = 2*3 + 1 = 7 n=77=4+34=22m=2l=3f(n)=23+1=7,即最后存活为 7 7 7
同理 n = 12 , 12 = 8 + 4 , m = 3 , l = 4 , f ( n ) = 2 ∗ 4 + 1 = 9 n=12,12 = 8+4,m=3,l=4,f(n) = 2*4+1 = 9 n=1212=8+4m=3l=4f(n)=24+1=9,最后存活 9 9 9

显然,表格中的值满足这个方程。我们用数学归纳法给出一个证明。

定理:如果 n = 2 m + l n=2^{m}+l n=2m+l 0 ≤ l &lt; 2 m 0\leq l&lt;2^{m} 0l<2m ,则 f ( n ) = 2 l + 1 f(n)=2l+1 f(n)=2l+1
证明:对 n n n 应用数学归纳法。 n = 1 n=1 n=1 的情况显然成立。我们分别考虑 n n n 是偶数和 n n n 是奇数的情况。
如果 n n n 是偶数,则我们选择 l 1 l_{1} l1 m 1 m_{1} m1 ,使得 n / 2 = 2 m 1 + l 1 n/2=2^{{m_{1}}}+l_{1} n/2=2m1+l1 ,且 0 ≤ l 1 &lt; 2 m 1 0\leq l_{1}&lt;2^{{m_{1}}} 0l1<2m1 。注意 l 1 = l / 2 l_{1}=l/2 l1=l/2 。我们有 f ( n ) = 2 f ( n / 2 ) − 1 = 2 ( ( 2 l 1 ) + 1 ) − 1 = 2 l + 1 f(n)=2f(n/2)-1=2((2l_{1})+1)-1=2l+1 f(n)=2f(n/2)1=2((2l1)+1)1=2l+1 ,其中第二个等式从归纳假设推出。
如果 n n n 是奇数,则我们选择 l 1 l_{1} l1 m 1 m_{1} m1 ,使得 ( n − 1 ) / 2 = 2 m 1 + l 1 (n-1)/2=2^{{m_{1}}}+l_{1} (n1)/2=2m1+l1 ,且 0 ≤ l 1 &lt; 2 m 1 0\leq l_{1}&lt;2^{{m_{1}}} 0l1<2m1 。注意 l 1 = ( l − 1 ) / 2 l_{1}=(l-1)/2 l1=(l1)/2 。我们有 f ( n ) = 2 f ( ( n − 1 ) / 2 ) + 1 = 2 ( ( 2 l 1 ) + 1 ) + 1 = 2 l + 1 f(n)=2f((n-1)/2)+1=2((2l_{1})+1)+1=2l+1 f(n)=2f((n1)/2)+1=2((2l1)+1)+1=2l+1 ,其中第二个等式从归纳假设推出。证毕。

答案的最漂亮的形式,与 n n n 的二进制表示有关:把 n n n 的第一位移动到最后,便得到 f ( n ) f(n) f(n) 。如果 n n n 的二进制表示为 n = b 0 b 1 b 2 b 3 … b m n=b_{0}b_{1}b_{2}b_{3}\dots b_{m} n=b0b1b2b3bm ,则 f ( n ) = b 1 b 2 b 3 … b m b 0 f(n)=b_{1}b_{2}b_{3}\dots b_{m}b_{0} f(n)=b1b2b3bmb0 。这可以通过把 n n n 表示为 2 m + l 2^{m}+l 2m+l 来证明。

n = 14 n=14 n=14,二进制为 1110 1110 1110,右移变为 1101 1101 1101,即 13 13 13
n = 16 n=16 n=16,二进制为 10000 10000 10000,右移变为 00001 00001 00001,即 1 1 1

一般情况下,考虑生还者的号码从 n − 1 n-1 n1 n n n 的变化, 我们可以得到以下的递推公式(编号从0开始):
f ( n , k ) = ( f ( n − 1 , k ) + k ) &VeryThinSpace; m o d &VeryThinSpace; n f(n,k)=(f(n-1,k)+k){\bmod n} f(n,k)=(f(n1,k)+k)modn, $ f(1,k)=0$
这种方法的运行时间是 O ( n ) O(n) O(n)

#include <iostream>
using namespace std;
//编号从0开始,也就是说如果编号从1开始结果要加1
int josephus(int n, int k) { //非返回版本
	int s = 0;
	for (int i = 2; i <= n; i++)
		s = (s + k) % i;
	return s;
}
int josephus_recursion(int n, int k) { //返回版本
	return n > 1 ? (josephus_recursion(n - 1, k) + k) % n : 0;
}
int main() {
	for (int i = 1; i <= 100; i++)
		cout << i << ' ' << josephus(i, 5) << ' ' << josephus_recursion(i, 5) << endl;
	return 0;
}

我的个人主页

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值