决策树ID3算法理解

本文详细介绍了推荐系统开发实战中提到的决策树ID3算法,重点在于理解信息增益的概念及其在特征选择中的作用。通过实例展示了如何计算信息增益并依据最大信息增益选择划分特征,最终形成决策树。文中还提供了Python实现脚本,帮助读者深入理解算法流程。
摘要由CSDN通过智能技术生成

最近再看 “推荐系统开发实战”--高阳团 这本书时候,里边举了个例子将决策树ID3过程,

觉得讲的比较好,这里做个记录!!!!

重点在于:

(1)每一次都要算某个特征属性的信息增益;

(2)根据信息增益最大特征属性做划分;最后分不了的就是叶子节点。

信息增益:g(D, A) = E(D) - E(D|A), E(D)是所有类别D的信息熵,后者是基于特征值A分割后计算的信息熵。

熵:-P(Xi)log2P(Xi)

PS. 重点看图中的案例,要明白最后它是怎么算出用“湿度”这个特征来做一次划分的

    (因为这一次计算“湿度”的信息增益比较高!)

实现脚本例子:

# -*-coding:utf-8-*-

"""
    Author: Thinkgamer
    Desc:
        代码4-6 构建是否进行活动的决策树
"""
import operator
import math

class DecisionTree:
    def __init__(self):
        pass

    # 加载数据集
    def loadData(self):
        # 天气晴(2),阴(1),雨(0);温度炎热(2),适中(1),寒冷(0);湿度高(1),正常(0)
        # 风速强(1),弱(0);进行活动(yes),不进行活动(no)
        # 创建数据集
        data = [
            [2, 2, 1, 0, "yes"],
            [2, 2, 1, 1, "no"],
            [1, 2, 1, 0, "yes"],
            [0, 0, 0, 0, "yes"],
            [0, 0, 0, 1, "no"],
            [1, 0, 0, 1, "yes"],
            [2, 1, 1, 0, "no"],
            [2, 0, 0, 0, "yes"],
            [0, 1, 0, 0, "yes"],
            [2, 1, 0, 1, "yes"],
            [1, 2, 0, 0, "no"],
            [0, 1, 1, 1, "no"],
        ]
        # 分类属性
        features = ["天气", "温度", "湿度", "风速"]
        return data, features

    # 计算给定数据集的香农熵
    def ShannonEnt(self, data):
        numData = len(data)  # 求长度
        labelCounts = {}
        for feature in data:
            oneLabel = feature[-1]  # 获得标签
            # 如果标签不在新定义的字典里创建该标签值
            labelCounts.setdefault(oneLabel, 0)
            # 该类标签下含有数据的个数
            labelCounts[oneLabel] += 1
        shannonEnt = 0.0
        for key in labelCounts:
            # 同类标签出现的概率
            prob = float(labelCounts[key]) / numData
            # 以2为底求对数
            shannonEnt -= prob * math.log2(prob)
        return shannonEnt

    # 划分数据集,三个参数为带划分的数据集,划分数据集的特征,特征的返回值
    def splitData(self, data, axis, value):
        retData = []
        for feature in data:
            if feature[axis] == value:
                # 将相同数据集特征的抽取出来
                reducedFeature = feature[:axis]
                reducedFeature.extend(feature[axis + 1 :])
                retData.append(reducedFeature)
        return retData  # 返回一个列表

    # 选择最好的数据集划分方式
    def chooseBestFeatureToSplit(self, data):
        numFeature = len(data[0]) - 1
        baseEntropy = self.ShannonEnt(data)
        bestInfoGain = 0.0
        bestFeature = -1
        for i in range(numFeature):
            # 获取第i个特征所有的可能取值
            featureList = [result[i] for result in data]
            # 从列表中创建集合,得到不重复的所有可能取值
            uniqueFeatureList = set(featureList)
            newEntropy = 0.0
            for value in uniqueFeatureList:
                # 以i为数据集特征,value为返回值,划分数据集
                splitDataSet = self.splitData( data, i, value )
                # 数据集特征为i的所占的比例
                prob = len(splitDataSet) / float(len(data))
                # 计算每种数据集的信息熵
                newEntropy += prob * self.ShannonEnt(splitDataSet)
            infoGain = baseEntropy - newEntropy
            # 计算最好的信息增益,增益越大说明所占决策权越大
            if infoGain > bestInfoGain:
                bestInfoGain = infoGain
                bestFeature = i
        return bestFeature

    # 递归构建决策树
    def majorityCnt(self, labelsList):
        labelsCount = {}
        for vote in labelsList:
            if vote not in labelsCount.keys():
                labelsCount[vote] = 0
            labelsCount[vote] += 1
        sortedLabelsCount = sorted(
            labelsCount.iteritems(), key=operator.itemgetter(1), reverse=True
        )  # 排序,True升序
        # 返回出现次数最多的
        print(sortedLabelsCount)
        return sortedLabelsCount[0][0]

    # 创建决策树
    def createTree(self, data, features):
        # 使用"="产生的新变量,实际上两者是一样的,避免后面del()函数对原变量值产生影响
        features = list(features)
        labelsList = [line[-1] for line in data]
        # 类别完全相同则停止划分
        if labelsList.count(labelsList[0]) == len(labelsList):
            return labelsList[0]
        # 遍历完所有特征值时返回出现次数最多的
        if len(data[0]) == 1:
            return self.majorityCnt(labelsList)
        # 选择最好的数据集划分方式
        bestFeature = self.chooseBestFeatureToSplit(data)
        bestFeatLabel = features[bestFeature]  # 得到对应的标签值
        myTree = {bestFeatLabel: {}}
        # 清空features[bestFeat],在下一次使用时清零
        del (features[bestFeature])
        featureValues = [example[bestFeature] for example in data]
        uniqueFeatureValues = set(featureValues)
        for value in uniqueFeatureValues:
            subFeatures = features[:]
            # 递归调用创建决策树函数
            myTree[bestFeatLabel][value] = self.createTree(
                self.splitData(data, bestFeature, value), subFeatures
            )
        return myTree

    # 预测新数据特征下是否进行活动
    def predict(self, tree, features, x):
        for key1 in tree.keys():
            secondDict = tree[key1]
            # key是根节点代表的特征,featIndex是取根节点特征在特征列表的索引,方便后面对输入样本逐变量判断
            featIndex = features.index(key1)
            # 这里每一个key值对应的是根节点特征的不同取值
            for key2 in secondDict.keys():
                # 找到输入样本在决策树中的由根节点往下走的路径
                if x[featIndex] == key2:
                    # 该分支产生了一个内部节点,则在决策树中继续同样的操作查找路径
                    if type(secondDict[key2]).__name__ == "dict":
                        classLabel = self.predict(secondDict[key2], features, x)
                    # 该分支产生是叶节点,直接取值就得到类别
                    else:
                        classLabel = secondDict[key2]
        return classLabel

if __name__ == "__main__":
    dtree = DecisionTree()
    data, features = dtree.loadData()
    myTree = dtree.createTree(data, features)
    print(myTree)
    label = dtree.predict(myTree, features, [1, 1, 1, 0])
    print("新数据[1,1,1,0]对应的是否要进行活动为:{}".format(label))

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值