博弈论总结

 

以下是我从网上收集的关于组合博弈的资料汇总:

有一种很有意思的游戏,就是有物体若干堆,可以是火柴棍或是围棋子等等均可。两个
人轮流从堆中取物体若干,规定最后取光物体者取胜。这是我国民间很古老的一个游戏
,别看这游戏极其简单,却蕴含着深刻的数学原理。下面我们来分析一下要如何才能够
取胜。

(一)巴什博奕(Bash Game):只有一堆n个物品,两个人轮流从这堆物品中取物,规
定每次至少取一个,最多取m个。最后取光者得胜。

    显然,如果n=m+1,那么由于一次最多只能取m个,所以,无论先取者拿走多少个,
后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则:如果
n=m+1r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走
k
≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的
取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。
   
这个游戏还可以有一种变相的玩法:两个人轮流报数,每次至少报一个,最多报十
个,谁能报到100者胜。
(二)威佐夫博奕(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同
时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

    POJ1067

这种情况下是颇为复杂的。我们用(akbk)(ak ≤ bk ,k=012…,n)表示
两堆物品的数量并称其为局势,如果甲面对(00),那么甲已经输了,这种局势我们
称为奇异局势。前几个奇异局势是:(00)、(12)、(35)、(47)、(6
10
)、(813)、(915)、(1118)、(1220)。

    可以看出,a0=b0=0,ak是未在前面出现过的最小自然数, bk= ak + k,奇异局势有
如下三条性质:

    1。任何自然数都包含在一个且仅有一个奇异局势中。
   
由于ak是未在前面出现过的最小自然数,所以有ak > ak-1 ,而 bk= ak + k > ak
-1 + k-1 = bk-1 > ak-1
。所以性质1。成立。
    2
。任意操作都可将奇异局势变为非奇异局势。
   
事实上,若只改变奇异局势(akbk)的某一个分量,那么另一个分量不可能在其
他奇异局势中,所以必然是非奇异局势。如果使(akbk)的两个分量同时减少,则由
于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。
    3
。采用适当的方法,可以将非奇异局势变为奇异局势。

    假设面对的局势是(a,b),若 b = a,则同时从两堆中取走 a 个物体,就变为了
奇异局势(00);如果a = ak b > bk,那么,取走b  – bk个物体,即变为奇异局
势;如果 a = ak   b < bk ,则同时从两堆中拿走 ak – ab – ak个物体,变为奇异局
势( ab – ak , ab – ak+ b – ak);如果a > ak b= ak + k,则从第一堆中拿走多余
的数量a – ak 即可;如果a < ak b= ak + k,分两种情况,第一种,a=aj j < k
,
从第二堆里面拿走 b – bj 即可;第二种,a=bj j < k,从第二堆里面拿走 b – a
j
即可。

    从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜
;反之,则后拿者取胜。

    那么任给一个局势(ab),怎样判断它是不是奇异局势呢?我们有如下公式:

    ak =[k1+√5/2]bk= ak + k  k=012…,n 方括号表示取整函数)

奇妙的是其中出现了黄金分割数(1+√5/2 = 1618…,因此,akbk组成的矩形近
似为黄金矩形,由于2/1+√5=√5-1/2,可以先求出j=[a√5-1/2],若a=[
j
1+√5/2],那么a = ajbj = aj + j,若不等于,那么a = aj+1bj+1 = aj+1
+ j + 1
,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异
局势。

(三)尼姆博奕(Nimm Game):有三堆各若干个物品,两个人轮流从某一堆取任意多的
物品,规定每次至少取一个,多者不限,最后取光者得胜。

    这种情况最有意思,它与二进制有密切关系,我们用(abc)表示某种局势,首
先(000)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是
0nn),只要与对手拿走一样多的物品,最后都将导致(000)。仔细分析一
下,(123)也是奇异局势,无论对手如何拿,接下来都可以变为(0nn)的情
形。

    计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号(+)表示
这种运算。这种运算和一般加法不同的一点是1+1=0。先看(123)的按位模2加的结
果:

1 =二进制01
2 =
二进制10
3 =
二进制11 +
———————
0 =
二进制00 (注意不进位)

    对于奇异局势(0nn)也一样,结果也是0

    任何奇异局势(abc)都有a+b+c =0

如果我们面对的是一个非奇异局势(abc),要如何变为奇异局势呢?假设 a < b
< c,
我们只要将 c 变为 a+b,即可,因为有如下的运算结果: a+b+(a+
b)=(a
+a)+(b+b)=0+0=0。要将c 变为a+b,只要从 c中减去 c-
a
+b)即可。

    1。(142139),14+21=2739-27=12,所以从39中拿走12个物体即可达
到奇异局势(142127)。

    2。(5581121),55+81=102121-102=19,所以从121中拿走19个物品
就形成了奇异局势(5581102)。

    3。(294558),29+45=4858-48=10,从58中拿走10个,变为(294
5
48)。

    4。我们来实际进行一盘比赛看看:
       
:(7,8,9)->(1,8,9)奇异局势
       
:(1,8,9)->(1,8,4)
       
:(1,8,4)->(1,5,4)奇异局势
       
:(1,5,4)->(1,4,4)
       
:(1,4,4)->(0,4,4)奇异局势
       
:(0,4,4)->(0,4,2)
       
:(0.4,2)->(0,2,2)奇异局势
       
:(0,2,2)->(0,2,1)
       
:(0,2,1)->(0,1,1)奇异局势
       
:(0,1,1)->(0,1,0)
       
:(0,1,0)->(0,0,0)奇异局势
       
甲胜。

 

取火柴的游戏
题目1:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根, 
可将一堆全取走,但不可不取,最后取完者为胜,求必胜的方法。 
题目2:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根, 
可将一堆全取走,但不可不取,最后取完者为负,求必胜的方法。
嘿嘿,这个游戏我早就见识过了。小时候用珠算玩这个游戏:第一档拨一个,第二档拨两个,依次直到第五档拨五个。然后两个人就轮流再把棋子拨下来,谁要是最后一个拨谁就赢。有一次暑假看见两个小孩子在玩这个游戏,我就在想有没有一个定论呢。下面就来试着证明一下吧
先解决第一个问题吧。
定义:若所有火柴数异或为0,则该状态被称为利他态,用字母T表示;否则, 
为利己态,用S表示。
[
定理1]:对于任何一个S态,总能从一堆火柴中取出若干个使之成为T态。
证明:
   
若有n堆火柴,每堆火柴有A(i)根火柴数,那么既然现在处于S态,
      c = A(1) xor A(2) xor … xor A(n) > 0;
   
c表示成二进制,记它的二进制数的最高位为第p位,则必然存在一个A(t),它二进制的第p位也是1。(否则,若所有的A(i)的第p位都是0,这与c的第p位就也为0矛盾)。
   
那么我们把x = A(t) xor c,则得到x < A(t).这是因为既然A(t)的第p位与c的第p位同为1,那么x的第p位变为0,而高于p的位并没有改变。所以x < A(t).
    A(1) xor A(2) xor … xor x xor … xor A(n)
  = A(1) xor A(2) xor … xor A(t) xor c xor … xor A(n)
  = A(1) xor A(2) xor… xor A(n) xor A(1) xor A(2) xor … xor A(n)
  = 0
这就是说从A(t)堆中取出 A(t) – x 根火柴后状态就会从S态变为T态。证毕
[
定理2]T态,取任何一堆的若干根,都将成为S态。
证明:用反证法试试。
     

      c = A(1) xor A(2) xor … xor A(i) xor … xor A(n) = 0

      c’ = A(1) xor A(2) xor … xor A(i’) xor c xor … xor A(n) = 0;
     
则有
c xor c’ = A(1) xor A(2) xor … xor A(i) xor … xor A(n) xor A(1) xor A(2) xor … xor A(i’) xor c xor … xor A(n) = A(i) xor A(i’) =0
     
进而推出A(i) = A(i’),这与已知矛盾。所以命题得证。
[
定理 3]S态,只要方法正确,必赢。 
 
最终胜利即由S态转变为T态,任何一个S态,只要把它变为T态,(由定理1,可以把它变成T态。)对方只能把T态转变为S(定理2)。这样,所有S态向T态的转变都可以有己方控制,对方只能被动地实现由T态转变为S态。故S态必赢。
[
定理4]T态,只要对方法正确,必败。 
 
由定理3易得。 
接着来解决第二个问题。
定义:若一堆中仅有1根火柴,则被称为孤单堆。若大于1根,则称为充裕堆。
定义:T态中,若充裕堆的堆数大于等于2,则称为完全利他态,用T2表示;若充裕堆的堆数等于0,则称为部分利他态,用T0表示。
 
孤单堆的根数异或只会影响二进制的最后一位,但充裕堆会影响高位(非最后一位)。一个充裕堆,高位必有一位不为0,则所有根数异或不为0。故不会是T态。
[
定理5]S0态,即仅有奇数个孤单堆,必败。T0态必胜。 
证明:
S0
态,其实就是每次只能取一根。每次第奇数根都由己取,第偶数根都由对 
方取,所以最后一根必己取。败。同理,  T0态必胜#
[
定理6]S1态,只要方法正确,必胜。 
证明:
若此时孤单堆堆数为奇数,把充裕堆取完;否则,取成一根。这样,就变成奇数个孤单堆,由对方取。由定理5,对方必输。己必胜。  # 
[
定理7]S2态不可转一次变为T0态。 
证明:
充裕堆数不可能一次由2变为0。得证。  #

[定理8]S2态可一次转变为T2态。 
证明:
由定理1S态可转变为T态,态可一次转变为T态,又由定理6S2态不可转一次变为T0态,所以转变的T态为T2态。  # 
[
定理9]T2态,只能转变为S2态或S1态。 
证明:
由定理2T态必然变为S态。由于充裕堆数不可能一次由2变为0,所以此时的S态不可能为S0态。命题得证。 
[
定理10]S2态,只要方法正确,必胜. 
证明:
方法如下: 
      1
  S2态,就把它变为T2态。(由定理8 
      2
  对方只能T2转变成S2态或S1态(定理9
   
若转变为S2,  转向1 
   
若转变为S1,  这己必胜。(定理5 
[
定理11]T2态必输。 
证明:同10 
综上所述,必输态有:  T2,S0 
         
必胜态:    S2,S1,T0. 
两题比较: 
第一题的全过程其实如下: 
S2->T2->S2->T2->  ……  ->T2->S1->T0->S0->T0->……->S0->T0(
0) 
第二题的全过程其实如下: 
S2->T2->S2->T2->  ……  ->T2->S1->S0->T0->S0->……->S0->T0(
0) 
下划线表示胜利一方的取法。  是否发现了他们的惊人相似之处。 
我们不难发现(见加黑部分)S1态可以转变为S0态(第二题做法),也可以转变为 
T0
(第一题做法)。哪一方控制了S1态,他即可以有办法使自己得到最后一根(转变为 
T0
,也可以使对方得到最后一根(转变为S0)。 
 
所以,抢夺S1是制胜的关键! 
 
为此,始终把T2态让给对方,将使对方处于被动状态,他早晚将把状态变为S1.

 
推荐题目

 

【POJ1067】取石子游戏 ||【NYOJ161】(威佐夫博奕(Wythoff Game))

【POJ1704】Georgia and Bob (staircase Nem 变形题)

【POJ2975】Nim (博弈)

【HDU1536】S-Nim (博弈,SG函数)

【HDU1097】John

【poj2348】Euclid's Game

[POJ1082]Calendar Game & HDU1079 Calendar Game

NYOJ137 取石子(三) ([PKU][POJ][1740][A New Stone Game楼教主真男人8题)

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值