将题目换一种方式描述就很简单了,就是给定一个N*M的方格,从方格的左上角走到右下角,只能横着走或者竖着走,不能往回走,求路径条数。由于题目给定的数据范围很小,4*5的方格,故用DFS简单求之,结果为35条。但当N、M>10之后,效率就下降得很厉害,需要换一种思路了。(见下方更新)
#include <iostream>
/*
从我做起振
我做起振兴
做起振兴中
起振兴中华
*/
using namespace std;
int startX=0,startY=0;
int endX=3,endY=4;
int path=0;
void dfs(int x,int y)
{
if(x==endX && y==endY)
path++;
else
{
if(x+1<=endX && y<=endY)
dfs(x+1,y);
if(x<=endX && y+1<=endY)
dfs(x,y+1);
}
}
int main()
{
dfs(startX,startY);
cout<<path<<endl;
return 0;
}
更新:
受班上ac女神的指点,采用dp的思想,得到转移方程dp[n][m]=dp[n-1][m]+dp[n][m-1],即到达(n,m)处的路径数为到达左边(n,m-1)和上方(n-1,m)处的路径数之和。注意这里n,m均>0,先预处理dp[0][m]=1,dp[n][0]=1,然后两层for循环即可,最后dp[n][m]即为所求。
代码如下:
long long dp[1000][1000]={0};
void solve()
{
for(int i=0;i<=endX;i++)
dp[i][0]=1;
for(int j=0;j<=endY;j++)
dp[0][j]=1;
for(int i=1;i<=endX;i++)
for(int j=1;j<=endY;j++)
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
相比上面的DFS,速度快了很多,即使n,m达到上千,也能很快算出,只是要用大数存储。