1. 介绍
加入你想将训练网络中的一些参数进行保存,并且在推理阶段读取,可以按照下面的方式进行处理。
2. 参数的保存
parser = argparse.ArgumentParser()
parser.add_argument('--path_to_trainning', type=str, default='path_to_training', help='xxx')
parser.add_argument('--path_to_save_models',type=str, default='models', help='xxx')
parser.add_argument('--feat_mode',type=str, default='xyz', help='xxx')
parser.add_argument('--num_epochs', type=int, default=100, help='xxx')
parser.add_argument('--batch_size', type=int, default=1024, help='input batch size')
parser.add_argument('--lr', type=float, default=0.0000001, help="learning rate")
parser.add_argument('--dropout', type=float, default=0.1, help='dropout rate')
parser.add_argument('--log_dir', type=str, default='logs', help='log file')
args=parser.parse_args()
params={}
params["num_epochs"]=args.num_epochs
params["batch_size"]=args.batch_size
params["lr"]=args.lr
params["dropout"]=args.dropout
params["log_dir"]=args.log_dir
with open("params.pkl", "wb") as f:
pickle.dump(params, f)
3. 参数的读取
import pickle
with open("params.pkl", "rb") as f:
params = pickle.load(f)