docker网络模式应用

本文介绍了红黑树在面试中的常见问题,包括其应用场景、时间复杂度和插入节点时的平衡策略。文章详细探讨了2-3树与红黑树的等价性,阐述了它们之间的转换规则,并通过实例展示了如何进行左旋、右旋操作以保持树的平衡。此外,还提及了删除操作的不同场景及其对红黑树结构的影响。
摘要由CSDN通过智能技术生成

二、面试题

面:考你几个红黑树的知识点🦀

  1. 红黑树的数据结构都用在哪些场景,有什么好处?
  2. 红黑树的时间复杂度是多少?
  3. 红黑树中插入新的节点时怎么保持平衡?

面:2-3树都是不没看,回去等消息吧!

三、2-3树与红黑树的等价性

红黑树规则

1. 根节点是黑色
2. 节点是红黑或者黑色
3. 所有子叶节点都是黑色(叶子是NIL节点,默认没有画出来)
4. 每个红色节点必须有两个黑色子节点(也同样说明一条链路上不能有链路的红色节点)
5. 黑高,从任一节点到齐每个叶子节点,经过的路径都包含相同数目的黑色节点

那么,这些规则是怎么总结定义出来的呢?接下里我们一步步分析讲解。

1. 为什么既有2-3树要有红黑树

首先2-3树(读法:二三树)就是一个节点有1个或者2个元素,而实际上2-3树转红黑树是由概念模型2-3-4树转换而来的。-4叉就是一个节点里有3个元素,这在2-3树中会被调整,但是在概念模型中是会被保留的。

虽然2-3-4树也是具备2-3树同样的平衡树的特性,但是如果直接把这样的模型用代码实现就会很麻烦,且效率不高,这里的复杂点包括;

  1. 2-叉、3-叉、4-叉,三种结构的节点类型,互相转换复杂度较高
  2. 3-叉、4-叉,节点在数据比较上需要进行多次,不像2-叉节点,直接布尔类型比较即可非左即右
  3. 代码实现上对每种差异,都需要有额外的代码,规则不够标准化

所以,希望找到一种平衡关系,既保持2-3树平衡和O(logn)的特性,又能在代码实现上更加方便,那么就诞生了红黑树。

2. 简单2-3树转红黑树

2-3树转红黑树,也可以说红黑树是2-3树2-3-4树的另外一种表现形式,也就是更利于编码实现的形式。

简单转换示例;

从上图可以看出,2-3-4树与红黑树的转换关系,包括;

  1. 2-叉节点,转换比较简单,只是把原有节点转换为黑色节点
  2. 3-叉节点,包括了2个元素,先用红色线把两个节点相连,之后拆分出来,最后调整高度黑色节点在上
  3. 4-叉节点,包括了3个元素,分别用红黑线连接,之后拆分出来拉升高度。这个拉升过程和2-3树调整一致,只是添加了颜色

综上,就是2-3-4树的节点转换,总结出来的规则,如下;

  1. 将2-3-4树,用二叉树的形式表示
  2. 3-叉、4-叉节点,使用红色、黑色连线进行连接
  3. 另外,3-叉节点有两种情况,导致转换成二叉树,就有左倾和右倾

3. 复杂2-3树转红黑树

简单2-3树转换红黑树的过程中,了解到一个基本的转换规则右旋定义,接下来我们在一个稍微复杂一点的2-3树与红黑树的对应关系,如下图;

上图是一个稍微复杂点的2-3树,转换为红黑树的过程,是不这样一张图让你对红黑树更有感觉了,同时它也满足一下条件;

  1. 从任意节点到叶子节点,所经过的黑色节点数目相同
  2. 黑色节点保持着整体的平衡性,也就是让整个红黑树接近于O(logn)时间复杂度
  3. 其他红黑树的特点也都满足,可以对照红黑树的特性进行比对

四、红黑树

1. 平衡操作

通过在上一章节2-3树的学习,在插入节点时并不会插到空位置,而是与现有节点融合以及调整,保持整个树的平衡。

而红黑树是2-3-4树的一种概念模型转换而来,在插入节点时通过红色链接相连,也就是插入红色节点。插入完成后进行调整,以保持树接近平衡。

那么,为了让红黑树达到平衡状态,主要包括染色、↔左右旋转、这些做法其实都是从2-3树演化过来的。接下来我们就分别讲解几种规则的演化过程,以此更好了解红黑树的平衡操作。

1.1 左旋转

左旋定义: 把一个向右倾斜的红节点链接(2-3树,3-叉双元素节点),转化为左链接。

背景:顺序插入元素,1、2、3,2-3树保持平衡,红黑树暂时处于右倾斜。

接下来我们分别对比两种树结构的平衡操作;

  1. 2-3树,所有插入的节点都会保持在一个节点上,之后通过调整节点位置,保持平衡。
  2. 红黑树,则需要通过节点的左侧旋转,将元素2拉起来,元素1和元素3,分别成为左右子节点。

红黑树的左旋,只会处理与之对应的2-3树节点进行操作,不会整体改变。

1.2 右旋转

右旋定义: 把一个向左倾斜的红节点连接(2-3树,3-叉双元素节点),转换为右连接。

背景:顺序插入元素,3、1、1,2-3树保持平衡,红黑树暂时处于左倾斜。

接下来我们分别对比两种树结构的平衡操作;

  1. 2-3树,所有插入的节点都会保持在一个节点上,之后通过调整节点位置,保持平衡。
  2. 红黑树,则需要通过节点的右侧旋转,将元素2拉起来,元素1和元素3,分别成为左右子节点。

你会发现,左旋与右旋是相互对应的,但在2-3树中是保持不变的

1.3 左右旋综合运用

左旋、右旋,我们已经有了一个基本的概念,那么接下来我们再看一个可以综合左右旋以及对应2-3树的演化案例,如下;

以上的例子分别演示了一个元素插入的三种情况,如下;

  1. 1、3,插入0,左侧底部插入,与2-3树相比,需要右旋保持平衡
  2. 1、3,插入2,中间位置插入,首先进行左旋调整元素位置,之后进行右旋进行树平衡
  3. 1、3,插入5,右侧位置插入,此时正好保持树平衡,不需要调整
1.4 染色

在2-3树中,插入一个节点,为了保持树平衡是不插入到空位置上的,当插入节点后元素数量有3个后则需要调整中间元素向上,来保持树平衡。与之对应的红黑树则需要调整颜色,来保证红黑树的平衡规则,具体参考如下;

2. 旋转+染色运用案例

接下来我们把上面讲解到的旋转染色,运用到一个实际案例中,如下图;

  • 首先从左侧开始,是一个按照顺序插入生产出来的红黑树,插入顺序;7、2、8、1、4、3、5
  • α,向目前红黑树插入元素6,插入后右下角有三个红色节点;3、5、6
  • β,因为右下角满足染色条件,变换后;黑色节点(3、5)、红色节点(4、6)。
  • γ,之后看被红色连线链接的节点7、4、2,最小节点在中间,左旋平衡树结构。
  • δ,左旋完成后,红色链接线的7、4、2为做倾顺序节点,因此需要做右旋操作。
  • ε,左旋、右旋,调整完成后,又满足了染色操作。到此恢复红黑树平衡。

注意,所有连接红色节点的,都是是红色线。以此与2-3树做对应。

3. 删除操作

根据2-3-4树模型的红黑树,在删除的时候基本是按照2-3方式进行删除,只不过在这个过程中需要染色和旋转操作,以保持树平衡。删除过程主要可以分为如图四种情况,如下;

3.1 删除子叶红色节点

红色子叶节点的删除并不会破坏树平衡,也不影响树高,所以直接删除即可,如下;

3.2 删除左侧节点
3.2.1 被删节点兄弟为黑色&含右子节点

3.2.2 被删节点兄弟为黑色&含左子节点

3.2.3 被删节点兄弟为黑色&含双子节点(红)

3.2.4 被删节点兄弟为黑色&不含子节点

3.2.5 被删节点兄弟为黑色&含双黑节点(黑)

3.3. 删除右侧节点
3.3.1 被删节点兄弟为黑色&含左子节点

3.3.2 被删节点兄弟为黑色&含右子节点

3.3.3 被删节点兄弟为黑色&含双子节点(红)

3.2.4 被删节点兄弟为黑色&不含子节点

3.2.5 被删节点兄弟为黑色&含双黑节点(黑)

言尽于此,完结

无论是一个初级的 coder,高级的程序员,还是顶级的系统架构师,应该都有深刻的领会到设计模式的重要性。

  • 第一,设计模式能让专业人之间交流方便,如下:

程序员A:这里我用了XXX设计模式

程序员B:那我大致了解你程序的设计思路了

  • 第二,易维护

项目经理:今天客户有这样一个需求…

程序员:明白了,这里我使用了XXX设计模式,所以改起来很快

  • 第三,设计模式是编程经验的总结

程序员A:B,你怎么想到要这样去构建你的代码

程序员B:在我学习了XXX设计模式之后,好像自然而然就感觉这样写能避免一些问题

  • 第四,学习设计模式并不是必须的

程序员A:B,你这段代码使用的是XXX设计模式对吗?

程序员B:不好意思,我没有学习过设计模式,但是我的经验告诉我是这样写的

image

从设计思想解读开源框架,一步一步到Spring、Spring5、SpringMVC、MyBatis等源码解读,我都已收集整理全套,篇幅有限,这块只是详细的解说了23种设计模式,整理的文件如下图一览无余!

资料领取方式:点击这里下载

image

[外链图片转存中…(img-gP7542Hc-1627458146703)]

从设计思想解读开源框架,一步一步到Spring、Spring5、SpringMVC、MyBatis等源码解读,我都已收集整理全套,篇幅有限,这块只是详细的解说了23种设计模式,整理的文件如下图一览无余!

资料领取方式:点击这里下载

[外链图片转存中…(img-QxWTPgR6-1627458146704)]

搜集费时费力,能看到此处的都是真爱!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值