数据库
- 2.1 池化技术:如何减少频繁创建数据库连接的性能损耗?
- 2.2 数据库优化方案(一):查询请求增加时,如何做主从分离?
- 2.3 数据库优化方案(二):写入数据量增加时,如何实现分库分表?
- 2.4 发号器:如何保证分库分表后ID的全局唯一性?
- 2.5 NoSQL:在高并发场景下,数据库和NoSQL如何做到互补?
缓存
- 3.1 缓存:数据库成为瓶颈后,动态数据的查询要如何加速?
- 3.2 缓存的使用姿势(一):如何选择缓存的读写策略?
- 3.3 缓存的使用姿势(二):缓存如何做到高可用?
- 3.4 缓存的使用姿势(三):缓存穿透了怎么办?
- 3.5 CDN:静态资源如何加速?
消息队列
- 4.1 消息队列:秒杀时如何处理每秒上万次的下单请求?
- 4.2 消息投递:如何保证消息仅仅被消费一次?
- 4.3 消息队列:如何降低消息队列系统中消息的延迟?
- 4.4 面试现场第二期:当问到项目经 历时,面试官究竟想要了解什么?
分布式服务
- 5.1 系统架构:每秒1万次请求的系统要做服务化拆分吗?
- 5.2 微服务架构:微服务化后,系统架构要如何改造?
- 5.3 RPC框架:10万QPS下如何实现毫秒级的服务调用?
- 5.4 注册中心:分布式系统如何寻址?
- 5.5 分布式Trace:横跨几十个分布式组件的慢请求要如何排查?
- 5.6 负载均衡:怎样提升系统的横向扩展能力?
- 5.7 API网关:系统的门面要如何做呢?
- 5.8 多机房部署:跨地域的分布式系统如何做?
- 5.9 Service Mesh:如何屏蔽服务化系统的服务治理细节?
维护
- 6.1 给系统加上眼睛:服务端监控要怎么做?
- 6.2 应用性能管理:用户的使用体验应该如何监控?
- 6.3 压力测试:怎样设计全链路压力测试平台?
- 6.4 配置管理:成千上万的配置项要如何管理?
- 6.5 降级熔断:如何屏蔽非核心系统故障的影响?
- 6.6 流量控制:高并发系统中我们如何操纵流量?
- 6.7 面试现场第三期:你要如何准备一场技术面试呢?
实战
- 7.1 计数系统设计(一):面对海量数据的计数器要如何做?
- 7.2 计数系统设计(二):50万QPS下如何设计未读数系统?
- 7.3 信息流设计(一):通用信息流系统的推模式要如何做?
- 7.4 信息流设计(二):通用信息流系统的拉模式要如何做?
高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求。
总目录展示
该笔记共八个节点(由浅入深),分为三大模块。
高性能。 秒杀涉及大量的并发读和并发写,因此支持高并发访问这点非常关键。该笔记将从设计数据的动静分离方案、热点的发现与隔离、请求的削峰与分层过滤、服务端的极致优化这4个方面重点介绍。
一致性。 秒杀中商品减库存的实现方式同样关键。可想而知,有限数量的商品在同一时刻被很多倍的请求同时来减库存,减库存又分为“拍下减库存”“付款减库存”以及预扣等几种,在大并发更新的过程中都要保证数据的准确性,其难度可想而知。因此,将用一个节点来专门讲解如何设计秒杀减库存方案。
高可用。 虽然介绍了很多极致的优化思路,但现实中总难免出现一些我们考虑不到的情况,所以要保证系统的高可用和正确性,还要设计一个PlanB来兜底,以便在最坏情况发生时仍然能够从容应对。笔记的最后,将带你思考可以从哪些环节来设计兜底方案。
篇幅有限,无法一个模块一个模块详细的展示(这些要点都收集在了这份《高并发秒杀顶级教程》里),觉得有需要的码友们,麻烦各位转发一下(可以帮助更多的人看到哟!)点这里,即可获得免费下载的方式!!
百度网盘链接:pan.baidu.com/s/1BDrBZ5sv4rzxyDDFLbpocw
提取码:exa7
由于内容太多,这里只截取部分的内容。需要这份《高并发秒杀顶级教程》的小伙伴,麻烦各位帮忙点赞分享支持一下(可以帮助更多的人看到哟!)
存中…(img-AlnLDTk3-1627902487149)]
由于内容太多,这里只截取部分的内容。需要这份《高并发秒杀顶级教程》的小伙伴,麻烦各位帮忙点赞分享支持一下(可以帮助更多的人看到哟!)