题目描述
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens’ placement, where ‘Q’ and ‘.’ both indicate a queen and an empty space respectively.
Example:
Input: 4
Output: [
[".Q…", // Solution 1
“…Q”,
“Q…”,
“…Q.”],
["…Q.", // Solution 2
“Q…”,
“…Q”,
“.Q…”]
]
Explanation: There exist two distinct solutions to the 4-queens puzzle as shown above.
思路
dfs。开始没看图,这个check()函数写了很久。。
代码
class Solution {
public:
vector<vector<string>> solveNQueens(int n) {
vector<string> res(n);
string tmp = "";
for (int i=0; i<n; ++i) tmp += ".";
for (int i=0; i<n; ++i) res[i] = tmp;
vector<vector<int>> vis(n, vector<int>(n, 0));
dfs(n, 0, vis, res);
return ans;
}
private:
vector<vector<string>> ans;
void dfs(int n, int cur, vector<vector<int>>& vis, vector<string>& res) {
if (cur == n) ans.push_back(res);
for (int i=0; i<n; ++i) {
bool tmp = check(n, cur, i, vis);
if (!check(n, cur, i, vis)) continue;
vis[cur][i] = 1;
res[cur][i] = 'Q';
dfs(n, cur+1, vis, res);
vis[cur][i] = 0;
res[cur][i] = '.';
}
return;
}
bool check(int n, int x, int y, vector<vector<int>>& vis) {
int sum = x+y;
for (int i=0; i<x; ++i) {
if (vis[i][y] == 1) return false;
}
for (int i=0; i<x; ++i) {
if (sum-i >= 0 && sum-i < n && vis[i][sum-i] == 1) return false;
}
int tx = x, ty = y;
while(tx >= 0 && tx < n && ty >= 0 && ty < n) {
if (vis[tx][ty] == 1) return false;
tx -= 1;
ty -= 1;
}
return true;
}
};