HW | AMD GPU查看型号rocm-smi --showallinfo

.

背景

在使用GPU进行AI模型训练或推理部署的时候,我们通常需要确认当前系统中的硬件信息,如GPU型号、GPU数量、GPU可用显存等等。

在NVIDIA GPU上,指令nvidia-smi默认打印以上所有的常用信息。对应来说,AMD GPU中常用指令rocm-smi,打印信息中目前(2024年12月24日平安夜)还不包含GPU型号。

待解决问题:如果希望查看当前系统中所配置的AMD GPU的型号,应该如何操作并将信息打印出来呢?

.

rocm-smi --showallinfo

针对这个问题,我们目前找到的最简单同时也是最繁琐的方法是使用–showallinfo参数,指令如下:

rocm-smi --showallinfo

使用该指令后,系统会输出所有和AMD GPU相关的信息。之所以称之为最繁琐的方法之一是因为该指令会把所有信息打印。在位于最前面的输出块,打印的信息会包含系统中所有GPU的ID信息,GPU型号(Device Name)也列在其中。

以上。

希望能够帮到大家,同时如果有更简易更精简的输出,欢迎大家讨论区讨论!

.

题后记

另外,祝大家平安夜快乐!圣诞快乐!

转眼又是一年圣诞节,今年的心情还是有些复杂的。我知道还需要时间,也有可能是自己的逃避。但不管怎么样,圣诞节总是令人快乐和温暖的 ^ ________________________________ ^!

接下来,继续加油!

.

<think>好的,我现在需要帮助用户在Ubuntu上配置Ollama以利用GPU加速,特别是关于环境变量的设置。用户提到了他们使用的是AMDGPUROCM驱动,而不是NVIDIA的CUDA。首先,我得回忆一下Ollama的GPU加速支持情况。 Ollama主要支持CUDA,但用户已经选择了ROCM驱动包,说明他们可能是在AMD显卡上运行。我需要确认Ollama是否支持ROCM以及如何配置。根据引用3,用户安装的是支持GPU加速的Torch 2.5.1,并且提到了ROCM和CUDA的区别,所以可能需要通过环境变量来指定使用ROCM。 接下来,我需要查找Ollama官方文档中关于GPU加速的配置方法。通常,这类工具会使用环境变量来启用特定的硬件加速。例如,可能需要在启动Ollama前设置HSA_OVERRIDE_GFX_VERSION或者HSA_OVERRIDE_GPU等变量来确保兼容性。另外,引用1提到OPENCV_FFMPEG_CAPTURE_OPTIONS这样的环境变量用于FFMPEG后端,这可能和视频处理相关,但用户的问题是关于Ollama的GPU加速,可能需要不同的变量。 用户提到他们安装了ROCM驱动包,所以需要确保系统已经正确安装了ROCm,并且相关的环境变量已经设置。例如,可能需要设置LD_LIBRARY_PATH包含ROCm的库路径。引用2中提到了永久设置环境变量的方法,比如修改.bashrc文件,用户可能需要类似的操作来确保Ollama启动时能正确加载ROCM相关的库。 可能的步骤包括: 1. 确认ROCm驱动和工具包已正确安装。 2. 设置Ollama使用的环境变量,如HSA_OVERRIDE_GFX_VERSION,根据AMD显卡的架构版本设置,比如gfx1030。 3. 在启动Ollama前导出这些变量,或者将其添加到用户的.bashrc中以便永久生效。 4. 验证Ollama是否成功调用了GPU,可以通过日志或性能监控工具查看。 另外,可能需要参考Ollama的官方文档或社区讨论,看看是否有特定的环境变量需要配置。例如,OLLAMA_GPU_PROVIDER或者类似的变量是否存在,或者是否需要通过Ollama的配置文件指定使用ROCM。 最后,生成相关问题时要围绕配置环境变量、验证GPU加速、不同硬件配置下的差异以及性能优化等方面。</think>### 步骤详解:Ubuntu上配置Ollama GPU加速的环境变量 1. **确认硬件和驱动支持** - AMD GPU需安装ROCm驱动包(版本需与Ollama兼容)[^3] - 验证ROCm安装: ```bash rocm-smi ``` 2. **设置关键环境变量** - 临时生效(当前终端会话): ```bash export HSA_OVERRIDE_GFX_VERSION=10.3.0 # 根据显卡架构调整,例如RDNA2架构为gfx1030 export HIP_VISIBLE_DEVICES=0 # 指定使用第一个GPU设备 ``` - 永久生效(添加到`.bashrc`): ```bash echo 'export HSA_OVERRIDE_GFX_VERSION=10.3.0' >> ~/.bashrc echo 'export HIP_VISIBLE_DEVICES=0' >> ~/.bashrc source ~/.bashrc ``` 3. **启动Ollama并验证GPU加速** - 启动时添加日志查看: ```bash OLLAMA_DEBUG=1 ollama serve ``` - 日志中出现`Using AMD GPU acceleration`或类似提示表明成功 4. **高级配置(可选)** - 限制显存使用: ```bash export HIP_DEVICE_MAX_HW_QUEUES=2 # 控制并行计算队列数量 ``` -GPU分配: ```bash export HIP_VISIBLE_DEVICES=0,1 # 指定多个GPU设备 ``` --- ### 注意事项 - ROCm对特定GPU架构(如gfx906/gfx1030)有严格支持列表,需匹配驱动版本[^3] - 若使用容器部署,需在Docker运行时添加`--device=/dev/kfd --device=/dev/dri`参数 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值