CodeForces - 1343A - Candies

博客详细介绍了CodeForces的一道题目,1343A - Candies。Vova发现了n个糖果包装纸,他记得每天购买的糖果数量构成一个等比数列,但忘记了基数x和天数k。题目要求找到满足条件的正整数x。博主提供了一个解决方案,通过枚举k,判断n是否能被2k-1整除,如果能则x为n/(2k-1)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链接:https://codeforc.es/contest/1343/problem/A

原题

Recently Vova found nn candy wrappers. He remembers that he bought x candies during the first day, 2x candies during the second day, 4x candies during the third day, ……, 2k−1x candies during the k-th day. But there is an issue: Vova remembers neither x nor k but he is sure that xx and kk are positive integers and k>1.
Vova will be satisfied if you tell him any positive integer xx so there is an integer k>1 that x+2x+4x+⋯+2k−1x=n. It is guaranteed that at least one solution exists. Note that k>1.
You have to answer tt independent test cases.
InputThe first line of the input contains one integer tt (1≤t≤104) — the number of test cases. Then tt test cases follow.
The only line of the test case contains one integer nn (3≤n≤109) — the number of candy wrappers Vova found. It is guaranteed that there is some positive integer xx and integer k>1 that x+2x+4x+⋯+2k−1x=n.OutputPrint one integer — any positive integer value of x so there is an integer k>1 that x+2x+4x+⋯+2k−1x=n.Example

Input

7
3
6
7
21
28
999999999
999999984

Output

1
2
1
7
4
333333333
333333328

题意

第1天找到x个糖果,第2天找到2x个糖果,第三天找到4x个糖果,……第k天找到2的k-1次方x个糖果,总共找到n个糖果,存在正整数x和k,给出一个n,输出一个x值。

**

思路

(1+2+4+……+2k-1)x=n
前面括号里是等比数列求和,括号里等于 2k-1,
所以(2k-1)x=n。
从2开始枚举k,看n能否被2k-1整除。若能,则输出n/(2k-1)的结果x;若不能,则k++继续判断。

代码

#include<iostream>
using namespace std;
int t;
int main()
{
    long long int n,x,a;
    cin>>t;
    while(t--)
    {
        a=3;
        cin>>n;
        if(n%a==0) x=n/a;
        while(n%a!=0)
        {
            a=(a+1)*2-1;
            if(n%a==0) x=n/a;
        }
        cout<<x<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值