Flink
文章平均质量分 76
十二同学啊
这个作者很懒,什么都没留下…
展开
-
Flink 核心编程(四) Sink
print方法其实就是一种Sinkpublic DataStreamSink<T> print(String sinkIdentifier) { PrintSinkFunction<T> printFunction = new PrintSinkFunction<>(sinkIdentifier, false); return addSink(printFunction).name("Print to Std. Out");}Flink内置了一些Si.原创 2021-06-21 16:31:08 · 346 阅读 · 0 评论 -
Flink的window机制
窗口概述在流处理应用中,数据是连续不断的,因此我们不可能等到所有数据都到了才开始处理。当然我们可以每来一个消息就处理一次,但是有时我们需要做一些聚合类的处理,例如:在过去的1分钟内有多少用户点击了我们的网页。在这种情况下,我们必须定义一个窗口,用来收集最近一分钟内的数据,并对这个窗口内的数据进行计算。流式计算是一种被设计用于处理无限数据集的数据处理引擎,而无限数据集是指一种不断增长的本质上无限的数据集,而Window窗口是一种切割无限数据为有限块进行处理的手段。在Flink中, 窗口(window)是原创 2021-06-22 09:44:05 · 437 阅读 · 0 评论 -
Flink 核心编程(三) Transform
转换算子可以把一个或多个DataStream转成一个新的DataStream.程序可以把多个复杂的转换组合成复杂的数据流拓扑说明:在使用Lambda表达式表达式的时候, 由于泛型擦除的存在, 在运行的时候无法获取泛型的具体类型, 全部当做Object来处理, 及其低效, 所以Flink要求当参数中有泛型的时候, 必须明确指定泛型的类型.DataStream → DataStreammap作用:将数据流中的数据进行转换, 形成新的数据流,消费一个元素并产出一个元素SingleOutputStrea.原创 2021-06-21 15:56:18 · 405 阅读 · 0 评论 -
Flink 核心编程(一) Environment
FLINK你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。新的改变我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:全新的界面设计 ,将会带来全新的写作体验;在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;增加了 图片拖拽 功能,你可以将原创 2021-06-21 11:16:52 · 161 阅读 · 0 评论 -
Flink 状态编程
文章预览:一.什么是状态二.为什么需要管理状态三.Flink中的状态分类四.Managed State的分类五.算子状态的使用六.键控状态的使用七.状态后端有状态的计算是流处理框架要实现的重要功能,因为稍复杂的流处理场景都需要记录状态,然后在新流入数据的基础上不断更新状态。SparkStreaming在状态管理这块做的不好, 很多时候需要借助于外部存储(例如Redis)来手动管理状态, 增加了编程的难度.Flink的状态管理是它的优势之一.一.什么是状态在流式计算中有些操作一次处理一个独立的事件(转载 2021-08-03 14:06:25 · 515 阅读 · 0 评论 -
Flink 部署模式
一.开发模式咱们前面在idea中运行Flink程序的方式就是开发模式.二.local-cluster模式Flink中的Local-cluster(本地集群)模式,主要用于测试, 学习.2.1 local-cluster模式配置local-cluster模式基本属于零配置.1.传Flink的安装包flink-1.12.0-bin-scala_2.11.tgz到hadoop1622.解压tar -zxvf flink-1.12.0-bin-scala_2.11.tgz -C /opt/modul转载 2021-08-02 21:44:46 · 597 阅读 · 0 评论 -
Flink SQL学习笔记
文章预览:一.核心概念1.1动态表和连续查询1.2在流上定义表(动态表)二.Flink Table API2.1导入需要的依赖2.2基本使用:表与DataStream的混合使用2.3基本使用:聚合操作2.4表到流的转换2.5通过Connector声明读入数据2.6通过Connector声明写出数据2.7其他Connector用法三.Flink SQL3.1基本使用3.2Kafka到Kafka四.时间属性4.1处理时间4.2事件时间使用UNBOUNDED_RANGEFlink 社区很早就设想过将批数据看作一原创 2021-08-02 21:09:34 · 461 阅读 · 0 评论 -
Flink 核心编程(二) Source
Flink框架可以从不同的来源获取数据,将数据提交给框架进行处理, 我们将获取数据的来源称之为数据源(Source)。从java的集合中读取数据一般情况下,可以将数据临时存储到内存中,形成特殊的数据结构后,作为数据源使用。这里的数据结构采用集合类型是比较普遍的。//1.创建流环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();//2.创建集合List<WaterSe.原创 2021-06-21 13:45:58 · 298 阅读 · 1 评论 -
Flink CEP编程
什么是Flink CEPFlinkCEP(Complex event processing for Flink) 是在Flink实现的复杂事件处理库. 它可以让你在无界流中检测出特定的数据,有机会掌握数据中重要的那部分。是一种基于动态环境中事件流的分析技术,事件在这里通常是有意义的状态变化,通过分析事件间的关系,利用过滤、关联、聚合等技术,根据事件间的时序关系和聚合关系制定检测规则,持续地从事件流中查询出符合要求的事件序列,最终分析得到更复杂的复合事件。1.目标:从有序的简单事件流中发现一些高阶特征原创 2021-06-22 19:23:34 · 258 阅读 · 0 评论