Codeforces Round #174 (Div. 2) Problem A

博客介绍了质数p的原始根的概念,即一个整数x(1≤x<p),使得x的幂次从x^2-1到x^p-1-1都不被p整除,但x^p-1-1可以。问题要求帮助计算给定质数p的原始根的数量。输入为一个质数p(2≤p<2000),输出是原始根的个数。示例中,当p=2时,唯一的原始根是2;当p=3时,原始根为2和3。
摘要由CSDN通过智能技术生成
A. Cows and Primitive Roots
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

The cows have just learned what a primitive root is! Given a prime p, a primitive root  is an integer x (1 ≤ x < p) such that none of integers x - 1, x2 - 1, ..., xp - 2 - 1 are divisible by p, but xp - 1 - 1 is.

Unfortunately, computing primitive roots can be time consuming, so the cows need your help. Given a prime p, help the cows find the number of primitive roots .

Input

The input contains a single line containing an integer p (2 ≤ p < 2000). It is guaranteed that p is a prime.

Output

Output on a single line the number of primitive roots .

Sample test(s)
input
3
output
1
input
5
output
2
Note

The only primitive root  is 2.

The primitive roots  are 2 and 3.




代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <iomanip>

using namespace std;
int main(){
	
	int p;
	cin>>p;
	int ans=0;
	for(int x = 1; x < p; x++) //遍历x 
	{
		int tmp=1;
		for(int j=1; j<p; j++) //x的j次方  
		{
			tmp*=x;
			tmp%=p;   //防止数据溢出,求余操作分歩 
			if(tmp==1)//即满足(x^tmp - 1)% p == 0 
			{
				if(j==p-1) // 即符合题意 (x^(p-1) - 1)% p == 0 
					ans++;
				break;
			}
		}
	}
	cout<<ans<<endl;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值