2017第八届Java A组蓝桥杯省赛真题第九题:分巧克力

第九题:分巧克力

儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。

为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:

  1. 形状是正方形,边长是整数
  2. 大小相同
    1
    2
    3
    4
    例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。

当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?

输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。

输出
输出切出的正方形巧克力最大可能的边长。

样例输入:
2 10
6 5
5 6

样例输出:
2

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
解题思路:用个二分法查找合适的分割,得到最大的正方形的宽度,就能获得答案.

	private static int k;
	private static int N;
	private static int ans;
	public static void main(String[] args) {
		Scanner sc =new Scanner(System.in);
		N=sc.nextInt();
		k=sc.nextInt();
		int[][] arr=new int[N][2];
		for (int i = 0; i < N; i++) {
			arr[i][0]=sc.nextInt();//h
			arr[i][1]=sc.nextInt();//w
		}
		int l=1,r=100001,mid=(l+r)/2;
		while(l<=r) {
			mid=(l+r)/2;
			int cnt=0;
			for (int i = 0; i < arr.length; i++) {
				cnt+=(arr[i][0]/mid)*(arr[i][1]/mid);
			}
			if(cnt>=k) {//数量超过k,当找到最大的宽度的mid时,结束运行,ans即为答案
				l=1+mid;
				ans=mid;
			}else {
				r=mid-1;
			}
		}
		System.out.println(ans);
	}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值