第九题:分巧克力
儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。
为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:
- 形状是正方形,边长是整数
- 大小相同
1
2
3
4
例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。
输出
输出切出的正方形巧克力最大可能的边长。
样例输入:
2 10
6 5
5 6
样例输出:
2
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
解题思路:用个二分法查找合适的分割,得到最大的正方形的宽度,就能获得答案.
private static int k;
private static int N;
private static int ans;
public static void main(String[] args) {
Scanner sc =new Scanner(System.in);
N=sc.nextInt();
k=sc.nextInt();
int[][] arr=new int[N][2];
for (int i = 0; i < N; i++) {
arr[i][0]=sc.nextInt();//h
arr[i][1]=sc.nextInt();//w
}
int l=1,r=100001,mid=(l+r)/2;
while(l<=r) {
mid=(l+r)/2;
int cnt=0;
for (int i = 0; i < arr.length; i++) {
cnt+=(arr[i][0]/mid)*(arr[i][1]/mid);
}
if(cnt>=k) {//数量超过k,当找到最大的宽度的mid时,结束运行,ans即为答案
l=1+mid;
ans=mid;
}else {
r=mid-1;
}
}
System.out.println(ans);
}