题目1:求能满足式子
∑
i
=
1
x
(
−
1
)
y
∗
i
=
a
\sum_{i=1}^{x}(-1)^y*i=a
∑i=1x(−1)y∗i=a,且
y
y
y为0或1的
x
x
x的最小值。(首先全取
y
=
0
y=0
y=0满足
∑
i
=
1
x
≥
a
\sum_{i=1}^x \ge a
∑i=1x≥a,然后每次可以-2,-4,…,-2*x。即满足两个条件即可:
x
∗
(
x
+
1
)
/
2
≥
a
,
x
∗
(
x
+
1
)
/
2
−
a
为
偶
数
x*(x+1)/2 \ge a,x*(x+1)/2-a为偶数
x∗(x+1)/2≥a,x∗(x+1)/2−a为偶数)