归并排序POJ2299

传送门:http://poj.org/problem?id=2299
归并排序的思想:先把每个数看成一段,然后两两合并成一个较大的有序数组,再把较大的两两合并,直到最后成为一个有序数组。

例如:

初始数组为:4 2 1 3

先把每个数看成一段,即:4 | 2 | 1 | 3

接着两两合并成有序数组,即:2 4 | 1 3

最后合并成总的有序数组,即:1 2 3 4

不难发现,在排序过程中,若某个数向前移动了N位,则必定存在N个逆序数。比如上面第二轮排序中,数字1一开始是在第2位,后面移到了第0位,前进了两位,因此必定存在两个逆序,即(2, 1), (4, 1)。所以只需要在归并排序过程中把这个数记录下来即可得到结果。

归并步骤:
第一步:申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列

第二步:设定两个指针,最初位置分别为两个已经排序序列的起始位置

第三步:比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置

重复步骤3直到某一指针超出序列尾

在这里插入图片描述
将另一序列剩下的所有元素直接复制到合并序列尾

#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;
const int maxn=5e5+10;
ll arr[maxn];
ll temp[maxn];
int n;
ll ans;
//合并两个有序的数组,用指针比较,分别用i表示左边数组的开始,j表示右边数组的开始;
//重新开一个temp数组,记录
void merge(int st,int mid,int en){
    int i,j,k;
    i=st,j=mid+1,k=st;
    while(i<=mid&&j<=en){
        if(arr[i]<=arr[j])
            temp[k++]=arr[i++];
        else{
            ans+=j-k;//计算逆序数
            temp[k++]=arr[j++];
            
        }
    }
    while(i<=mid){
        temp[k++]=arr[i++];
    }
    while(j<=en){
        temp[k++]=arr[j++];
    }
    for(int i=st;i<=en;i++)
        arr[i]=temp[i];
}
//将无序的数组排成有序数组,不停分割
void mergesort(int st,int en){
    if(st<en){
        int mid=(st+en)/2;
        mergesort(st,mid);
        mergesort(mid+1,en);
        merge(st,mid,en);
    }
}
int main(){
    while(~scanf("%d",&n)&&n){
        ans=0;
        for(int i=1;i<=n;i++)
            scanf("%lld",&arr[i]);
        mergesort(1,n);
        printf("%lld\n",ans);
    }
}

同步定位与地图构建(SLAM)技术为移动机器人或自主载具在未知空间中的导航提供了核心支撑。借助该技术,机器人能够在探索过程中实时构建环境地图并确定自身位置。典型的SLAM流程涵盖传感器数据采集、数据处理、状态估计及地图生成等环节,其核心挑战在于有效处理定位与环境建模中的各类不确定性。 Matlab作为工程计算与数据可视化领域广泛应用的数学软件,具备丰富的内置函数与专用工具箱,尤其适用于算法开发与仿真验证。在SLAM研究方面,Matlab可用于模拟传感器输出、实现定位建图算法,并进行系统性能评估。其仿真环境能显著降低实验成本,加速算法开发与验证周期。 本次“SLAM-基于Matlab的同步定位与建图仿真实践项目”通过Matlab平台完整再现了SLAM的关键流程,包括数据采集、滤波估计、特征提取、数据关联与地图更新等核心模块。该项目不仅呈现了SLAM技术的实际应用场景,更为机器人导航与自主移动领域的研究人员提供了系统的实践参考。 项目涉及的核心技术要点主要包括:传感器模型(如激光雷达与视觉传感器)的建立与应用、特征匹配与数据关联方法、滤波器设计(如扩展卡尔曼滤波与粒子滤波)、图优化框架(如GTSAM与Ceres Solver)以及路径规划与避障策略。通过项目实践,参与者可深入掌握SLAM算法的实现原理,并提升相关算法的设计与调试能力。 该项目同时注重理论向工程实践的转化,为机器人技术领域的学习者提供了宝贵的实操经验。Matlab仿真环境将复杂的技术问题可视化与可操作化,显著降低了学习门槛,提升了学习效率与质量。 实践过程中,学习者将直面SLAM技术在实际应用中遇到的典型问题,包括传感器误差补偿、动态环境下的建图定位挑战以及计算资源优化等。这些问题的解决对推动SLAM技术的产业化应用具有重要价值。 SLAM技术在工业自动化、服务机器人、自动驾驶及无人机等领域的应用前景广阔。掌握该项技术不仅有助于提升个人专业能力,也为相关行业的技术发展提供了重要支撑。随着技术进步与应用场景的持续拓展,SLAM技术的重要性将日益凸显。 本实践项目作为综合性学习资源,为机器人技术领域的专业人员提供了深入研习SLAM技术的实践平台。通过Matlab这一高效工具,参与者能够直观理解SLAM的实现过程,掌握关键算法,并将理论知识系统应用于实际工程问题的解决之中。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值