树状数组例题(poj2299)

传送门:http://poj.org/problem?id=2299
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,

Ultra-QuickSort produces the output
0 1 4 5 9 .

Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input

The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 – the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output

For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
在这里插入图片描述

Sample Input

5
9
1
0
5
4
3
1
2
3
0
Sample Output
6
0

本题要求对于给定的无序数组,求出经过最少多少次相邻元素的交换之后,可以使数组从小到大有序。

两个数(a, b)的排列,若满足a > b,则称之为一个逆序对。

很明显可以知道,如果相邻的两个元素满足前一个大于后一个,则肯定要交换一次,因为最终位置是小的在前,大的在后。因此本题其实就是求原数组中的逆序对的数目。
在挑战程序设计这本书树状数组部分,可以了解树状数组来解决逆序对问题。
一下详细解释参考博客大佬,附注链接

1.解释为什么要有离散的这么一个过程?
    刚开始以为999.999.999这么一个数字,对于int存储类型来说是足够了。
    还有只有500000个数字,何必要离散化呢?
    刚开始一直想不通,后来明白了,后面在运用树状数组操作的时候,
    用到的树状数组C[i]是建立在一个有点像位存储的数组的基础之上的,
    不是单纯的建立在输入数组之上。
    比如输入一个9 1 0 5 4,那么C[i]树状数组的建立是在,
 
    数据:9 1 0 5 4  p[i].val
    编号:1 2 3 4 5  p[i].oder = i*************
    sort
    数据:0 1 4 5 9
    编号:3 2 5 4 1
    顺序:1 2 3 4 5
 
    a[p[i].编号] = 顺序号;**********************
    
    a[3] = 1<--0;
    a[2] = 2<--1;
    a[5] = 3<--4;
    a[4] = 4<--5;
    a[1] = 5<--9;
      
    a[]={ 5 2 1 4 3 }
    新号:1 2 3 4 5
    值  :
    下标 0 1 2 3 4 5 6 7 8 9
    数组 1 1 0 0 1 1 0 0 0 1
    现在由于999999999这个数字相对于500000这个数字来说是很大的,
    所以如果用数组位存储的话,那么需要999999999的空间来存储输入的数据。
    这样是很浪费空间的,题目也是不允许的,所以这里想通过离散化操作,
    使得离散化的结果可以更加的密集。
    简言之就是开一个大小为这些数的最大值的树状数组
2. 怎么对这个输入的数组进行离散操作?
   离散化是一种常用的技巧,有时数据范围太大,可以用来放缩到我们能处理的范围;
   因为其中需排序的数的范围0---999 999 999;显然数组不肯能这么大;
   而N的最大范围是500 000;故给出的数一定可以与1.。。。N建立一个一一映射;
   (1)当然用map可以建立,效率可能低点;
   (2)这里用一个结构体
   struct Node
   {
      int val,pos;
   }p[510000];和一个数组a[510000];
   其中val就是原输入的值,pos是下标;
   然后对结构体按val从小到大排序;
   此时,val和结构体的下标就是一个一一对应关系,
   而且满足原来的大小关系;
   for(i=1;i<=N;i++)
   a[p[i].pos]=i;
   然后a数组就存储了原来所有的大小信息;
   比如 9 1 0 5 4 ------- 离散后aa数组
   就是 5 2 1 4 3;
   具体的过程可以自己用笔写写就好了。
3. 离散之后,怎么使用离散后的结果数组来进行树状数组操作,计算出逆序数?
    如果数据不是很大, 可以一个个插入到树状数组中,
    每插入一个数, 统计比他小的数的个数,
    对应的逆序为 i- sum( a[i] ),
    其中 i 为当前已经插入的数的个数,
    sum( a[i] )为比 a[i] 小的数的个数,
    i- sum( a[i] ) 即比 a[i] 大的个数, 即逆序的个数
    但如果数据比较大,就必须采用离散化方法
    假设输入的数组是9 1 0 5 4, 离散后的结果a[] = {5,2,1,4,3};
在离散结果中间结果的基础上,那么其计算逆序数的过程是这么一个过程。
1.输入5,   调用add(5, 1),把第5位设置为1
1 2 3 4 5
0 0 0 0 1
计算1-5上比5小的数字存在么? 这里用到了树状数组的sum(5= 1操作,
现在用输入的下标1 -sum(5) = 0 就可以得到对于5的逆序数为02. 输入2, 调用add(2, 1),把第2位设置为1
1 2 3 4 5
0 1 0 0 1
计算1-2上比2小的数字存在么? 这里用到了树状数组的sum(2= 1操作,
现在用输入的下标2 - sum(2) = 1 就可以得到对于2的逆序数为13. 输入1, 调用add(1, 1),把第1位设置为1
1 2 3 4 5
1 1 0 0 1
计算1-1上比1小的数字存在么? 这里用到了树状数组的sum(1= 1操作,
现在用输入的下标 3 -sum(1) = 2 就可以得到对于1的逆序数为24. 输入4, 调用add(4, 1),把第5位设置为1
1 2 3 4 5
1 1 0 1 1
计算1-4上比4小的数字存在么? 这里用到了树状数组的sum(4= 3操作,
现在用输入的下标4 - sum(4) = 1 就可以得到对于4的逆序数为15. 输入3, 调用add(3, 1),把第3位设置为1
1 2 3 4 5
1 1 1 1 1
计算1-3上比3小的数字存在么? 这里用到了树状数组的sum(3= 3操作,
现在用输入的下标5 - sum(3) = 2 就可以得到对于3的逆序数为26. 0+1+2+1+2 = 6 这就是最后的逆序数
分析一下时间复杂度,首先用到快速排序,时间复杂度为O(NlogN),
后面是循环插入每一个数字,每次插入一个数字,分别调用一次add()sum()
外循环N, add()sum()时间O(logN) => 时间复杂度还是O(NlogN)
``

```c
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#define ll long long
using namespace std;
const int maxn=5e5+10;
int tree[maxn],tot[maxn];
int n;
struct node{
    int pos,val;
}a[maxn];
void init(){
    memset(tree,0,sizeof(tree));
}
bool cmp(node a,node b){
    return a.val<b.val;
}
int lowbit(int x){
    return x&(-x);
}
int query(int x){
    int res=0;
    while(x>0){
        res+=tree[x];
        x-=lowbit(x);
    }
    return res;
}
void add(int x,int k){
    while(x<=n){
        tree[x]+=k;
        x+=lowbit(x);
    }
}

int main(){
    while(~scanf("%d",&n)){
        if(n==0)break;
        init();
        ll ans=0;
        for(int i=1;i<=n;i++){
            scanf("%d",&a[i].val);
            a[i].pos=i;
        }
        sort(a+1,a+n+1,cmp);
        for(int i=1;i<=n;i++)
            tot[a[i].pos]=i;
        for(int i=1;i<=n;i++){
            add(tot[i], 1);
            ans+=i-query(tot[i]);
        }
        printf("%lld\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值