在window10下使用directml加速phi-3模型的一些记录

1.安装anaconda,安装python 安装torch等参考网上资料非常多 不细描述

2.参考微软官网【在windows上通过DirectML启用Pytorch文档,检查系统版本 检查gpu版本

3.参考微软官网【在windows上通过DirectML启用Pytorch】文档,安装torch_directml模块

4.参考微软官网【在windows上通过DirectML启用Pytorch】文档,验证设备是否可用。

5.下载phi-3模型

6.运行模型

import torch
import torch_directml
from transformers import Phi3Model,Phi3Config
from transformers import AutoTokenizer,pipeline
dml=torch_directml,device(0) #0为GPU设备index
torch.set_default_device(dml)
model_dir='./'  #模型所在文件路径
configuration = Phi3Config.from_pretrained(model_dir)
model=Phi3Model(configuration)

tokenizer = AutoTokenizer.from_pretrained(model_dir)

messages=[{"role":"system","content":"who are you"}]
pipe =pipeline("text-generation",model=model,tokenizer=tokenizer)

generation_args = {
"max_new_tokens":500,
"return_full_text",False,
"temperature":0.0,
"do_sample":False,
}
output = pipe(message,**generation_args)
print(output[0]['generated_text'])

有两点要特别讲一下,第一,可用使用 torch_directml.device_name(0)来查看具体使用的是哪个显卡。

第二,我有安装onnxruntime,但是好像不安装也可以,这点没有验证。

最后要说明一下,我上面的代码并没有进行完全验证,主要是在执行到加载模型处,因显卡内存不足,程序退出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值