深度学习
iam_大鹏鸟
这个作者很懒,什么都没留下…
展开
-
深度神经网络反向传播公式推导
深度神经网络反向传播公式推导 反向传播推到 上边连接推到的很详细。原创 2019-12-09 21:28:11 · 208 阅读 · 0 评论 -
Deep Cascaded Regression for Face Alignment(DCR2015)
和传统回归方法的比较: 回归思路基本沿袭传统方法(思路大体和LBF差不多),都是通过级联的方式,但是也有明显不同于传统的方法,1,在初值选取方面,传统方法是通过归一化后取平均形状作为初值(回归依赖于初值的选取,有时会陷入局部最小值),该方法是通过网络的方法,得到初值的粗略估计(该方法的粗略估计效果并不好,没有传统网络的方法好,原因可能是没有利用全局信息,但是相对于传统的方法效果要好,可通过对比发现...原创 2019-04-26 16:47:06 · 634 阅读 · 1 评论 -
练习编写神经网络对MNIST_data尝试
在学习深度学习的过程中,激起了亲手编写网络的欲望,由于自己的水平所限,只能从简单的网络做起, 下边是我编写的简单网络,mnist数据集的图片大小是28*28*1,我就设计了两个卷积层,3*3的卷积核,步长为2,一个步长为2的2*2的最大池化层,这些整完后,我发现网络的输出的长宽大小是4*4,于是就在后边接了两层的全连接,两层全连接中间使用dropout,防止过拟合;损失函数采用平方损失,优化器是选 用随机梯度下降优化(0.1),这样简易的小网络就写出来了。原创 2019-04-18 11:00:49 · 239 阅读 · 1 评论