算法
文章平均质量分 61
码视野
这个作者很懒,什么都没留下…
展开
-
AI推荐的初级算法工程师学习路线
7. 深度学习算法:深度学习算法是人工智能领域的重要分支,学习深度学习算法会让你接触到很多领域的研究和应用,如卷积神经网络、循环神经网络等。3. 常用算法:学习并掌握一些基本算法,如排序算法(快速排序、归并排序、冒泡排序等)、搜索算法(二分法、DFS、BFS等)。4. 算法设计与分析:学习算法设计的具体策略和技巧,如贪心算法、动态规划算法、回溯算法等,并学习算法复杂性的分析方法。6. 机器学习算法:学习机器学习算法,如线性回归、朴素贝叶斯、支持向量机、决策树、集成学习等。原创 2023-03-10 06:05:22 · 878 阅读 · 0 评论 -
递归算法这样介绍,想不通过面试都难
递归算法是指在函数或过程的定义中使用自身的方法。在递归过程中,一个问题被分解为一个或多个相同或类似的子问题,并且这些子问题会被递归地求解,直到达到最基本的子问题,再利用已知的结果合并解决整个问题。递归的定义是指在函数或过程的定义中使用自身的方法。递归的实现方式是在函数或过程内部调用自身。原创 2023-02-25 00:09:20 · 1542 阅读 · 0 评论 -
Java算法,分治算法一文介绍完成
分治算法(divide-and-conquer algorithm)是一种通过把一个复杂的问题分解为若干个相对简单的子问题,并且子问题之间相互独立,求解子问题然后将其组合起来,就得到原问题的解的计算机算法。举例如求解一个有序数组中的最大值,可以采用分治算法来求解,将数组拆分成两个子数组,对比两个子数组中的最大值,就可以求出数组的最大值。(1)分解:将大规模的问题,分解成若干个子问题,如果每个独立的子问题,都可以很容易地求解,那么原问题也可以被求解。1. 分治算法可能产生大量不必要的运算,降低算法效率;原创 2023-02-08 09:03:02 · 731 阅读 · 0 评论 -
面试时这样介绍算法,想不高薪都难,深度优先搜索算法
深度优先搜索算法是一种用于图形和树的遍历算法。它通过沿着树的深度(而不是广度)努力地搜索最佳解来实现,即找到最优解,或者覆盖树中的所有节点。算法的主要特征是它以一种比较深的方式去搜索问题的解空间,而不是从上到下进行搜索。 树的每个节点都被记录下来,作为搜索的初始节点,从第一个节点开始,搜索它的子节点直到子节点没有子节点,然后回到父节点,搜索它的兄弟节点,如此反复遍历搜索整棵树,直到没有叶节点,它是一种递归算法。 深度优先搜索的时间复杂度是指数级别的,它和节点数量成正比,比如节点数为N,则时间复杂度O(N)。原创 2023-02-07 19:03:00 · 169 阅读 · 0 评论 -
面试时这样介绍算法,想不高薪都难,排序算法(贪心算法)
根据决策准则,在当前的情况下,选取最优的本地解决方案,再根据该本地解决方案作 为新的初始状态,进行下一步迭代,直至最终收敛为全局最优解。贪心算法可用于求解NP完全问题,如求解最小生成树,最短路径等问题,也可用于求解资源分配问题,选择问题等。比如用贪心算法求解最短路径时,因为仅考虑当前最短路径,可能会出现最终并不是最短的路径。贪心算法旨在以期望获取最优解,是一种常用的近似算法,可用于解决复杂问题。贪心算法的时间复杂度一般为O(n^2),也有O(nlogn)的特例。贪心算法的空间复杂度一般为O(1)。原创 2023-02-07 16:06:33 · 2209 阅读 · 0 评论 -
常用算法分类
分治算法,贪心算法,动态规划算法,回溯算法,搜索算法,排序算法,求逆元算法,数学算法,机器学习算法,深度学习算法。原地算法,空间复杂度为O(1)的算法,空间复杂度为O(n)的算法,空间复杂度为O(n^2)的算法。常数级算法,对数级算法,线性对数级算法,线性级算法,平方级算法,立方级算法,指数级算法。纯算法,组合算法,增量算法,迭代算法,递归算法,并行算法,分布式算法。字符串算法,如KMP算法,字符串哈希算法等,用于解决字符串问题。图论算法,如最短路径算法,最小生成树算法等,用于解决图论问题。原创 2023-01-28 13:10:31 · 2392 阅读 · 0 评论 -
算法应该怎样学习
算法流程:详细描述算法的流程,包括输入和输出,算法核心部分的具体实现。示例代码:给出算法的代码实现,并加上注释,帮助读者理解算法的具体实现。应用场景:介绍该算法在实际应用中的场景,如何应用这个算法来解决问题。优点和缺点:列出算法的优点和缺点,说明算法适用的场景和限制。问题描述:简要描述该算法要解决的问题,并给出一些背景知识。空间复杂度:分析算法的空间复杂度,说明算法所需的存储空间。时间复杂度:分析算法的时间复杂度,说明算法的执行效率。参考文献:提供相关的文献,可以帮助读者进一步了解算法。原创 2023-01-28 12:52:13 · 190 阅读 · 1 评论 -
面试时这样介绍算法,想不高薪都难,排序算法(插入排序)
最后,函数返回排序好的数组。插入排序是一种简单的排序算法,它的基本思想是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。例如,当排序的数据集大小为n,其中n原创 2023-01-28 12:43:56 · 680 阅读 · 0 评论 -
面试时这样介绍算法,想不高薪都难,排序算法(冒泡排序)
冒泡排序是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。在这个场景中,冒泡排序明显不能满足性能要求,因为冒泡排序的时间复杂度为O(n^2),对于大规模数据集来说会有明显的性能问题。对于一个学生成绩列表进行排序。在冒泡排序中,通过两重循环,需要对每个元素都进行n-1次比较,所以总共需要进行n(n-1)/2次比较,所以时间复杂度为O(n^2)。例如,如果要对一个学生成绩列表进行排序,并且学生成绩相同时需要保持学生姓名的顺序,那么冒泡排序就是一个很好的选择。原创 2023-01-28 12:08:50 · 1509 阅读 · 0 评论 -
面试时这样介绍算法,想不高薪都难,排序算法(归并排序)
算法背景归并排序(Merge sort)是一种排序算法,它的目的是将一个无序的数组变成有序的。它采用分治法,将原数组不断地分成若干个小数组,直到每个小数组只有一个元素。然后把这些小数组按照顺序合并起来,最终得到一个有序的数组。归并排序需要额外的空间来存放临时合并的数组,时间复杂度为O(nlogn),空间复杂度为O(n),属于稳定排序算法。归并排序适用于大数据量排序,因为它具有较高的效率,在排序大数据量的时候比较常用。归并排序是稳定排序算法,它能保证相同元素之间的顺序不变。原创 2023-01-18 23:01:06 · 811 阅读 · 0 评论 -
面试时这样介绍算法,想不高薪都难,排序算法(快速排序)
算法背景快速排序是一种常用的排序算法,它的主要作用是将一个无序数组变成有序数组。它采用了分治策略,首先在数组中选择一个基准元素,然后将数组中的元素分成两部分,一部分的元素小于基准元素,另一部分的元素大于基准元素。然后对这两部分分别递归地进行快速排序,最终得到有序数组。快速排序的时间复杂度理论上是O(nlogn),空间复杂度是O(logn),在随机数据的情况下表现较好,但是在最坏情况下时间复杂度可能会退化到O(n^2)。这种算法常用在大型数据的排序上,因为它很快。算法流程。原创 2023-01-14 12:07:22 · 998 阅读 · 1 评论