- 博客(48)
- 收藏
- 关注
原创 人工智能的一些基本概念的简单理解
梯度就是在当前参数下,函数下降最快的那个方向和陡峭程度,是一个向量梯度下降算法就是在每一轮中通过前向传播计算代价函数,根据代价函数求神经网络中每个参数的偏导(即梯度),以此作为这些参数对代价函数的影响程度,将这些参数按照梯度减去学习率,即可获得下一轮的参数,直到收敛到最小值激活函数主要有sigmoid、tanh、relu及其变体(leakyLU、ELU)、softmaxsigmoid的优点:1、计算简单,适合二分类输出层 sigmoid的缺点:2、输出范围0-1,输出中心不是0,影响模型的泛化能力。
2025-10-11 19:43:14
294
原创 python10.0+出现fairseq安装失败解决
注意:以下解决方案可能存在问题,但不会导致什么不可逆的影响,解决不了直接把site-packages的fairseq删了就行,如果其他方案难以解决可以尝试此方案。
2025-10-10 13:23:11
418
原创 python零散问题记录
在38中,如果你的参数字典想同时给好多人用,但是**params是不会自动筛选的,这时候可以在类里面(例子中是TrainNet)的构造参数里加一个**kwargs,这样多余的参数就会自动 传入**kwargs,这样就保证了参数不错误但也不发挥作用。路径与文件分割:directory, filename = os.path.split(path) #(‘/home/user/docs’, ‘file.txt’)它允许函数接收任意数量的位置参数(按照位置输入的参数),并将它们存储在一个元组(tuple)中。
2025-09-19 13:35:04
827
原创 git hub初使用问题记录
1.先检查ssh连接是否有效:ssh -T git@github.com,看返回的仓库对不对的上,如果对不上就重新连接,一般会是 hi xxxxxxx。然后重新git remote add origin git@github.com:XXX/XXX。4.最后如果发现如何检查都错误,可能是远程仓库缓存异常(比如尝试了很多次连接仓库)3.如果是ssh连接在pycharm的github的设置页面左下角勾上使用ssh。2.然后检查代理是否有效,如果是pycharm需要在pycharm设置代理。
2025-08-27 15:02:06
433
原创 机器学习-Cluster
eps=0.5, # ε半径min_samples=5, # MinPts核心点至少有几个邻居metric=‘euclidean’, # 距离度量leaf_size=30, # 树算法的叶子大小p=None, # 闵可夫斯基距离的p值n_jobs=None # 并行数重要属性dbscan.core_sample_indices_ # 核心点索引数组。
2025-08-13 20:30:23
694
原创 机器学习-集成学习(EnsembleLearning)
2 GBDT的核心思想梯度提升:通过梯度下降来最小化损失函数决策树基学习器:使用决策树作为弱学习器残差学习:每个新树学习前序模型的残差加法模型:将多个弱学习器的预测结果累加3 GBDT工作流程1】 初始化模型(常数值预测)计算当前模型的负梯度(伪残差)用伪残差拟合一棵决策树通过线搜索确定最优步长更新模型(将新树的预测乘以学习率后加到原模型)3】 组合所有树的预测结果4 GBDT的关键特点1】 优点高预测精度:在多种任务上表现优异。
2025-08-12 20:31:03
1255
原创 机器学习-决策树(DecisionTree)
对于一个离散随机变量XXX,其可能取值为x1x2xnx1x2...xn,对应的概率分布为p1p2pnp1p2...pnHX−∑i1npilog2piHX−i1∑npilog2pi其中,piPXxipiPXxi表示随机变量XXX取值为xix_ixi的概率。给定随机变量XXX和YYYXXX在YY。
2025-08-11 19:56:42
1350
1
原创 机器学习-逻辑回归(Logistic Regression)
ggg代表一个常用的逻辑函数(logistic function)为SSS形函数(Sigmoid function),公式为:gz11e−zgz1e−z1hx11e−wTxhx1e−wTx1。
2025-08-08 20:38:16
691
2
原创 机器学习-KNN
机器学习-KNNKNN大致流程1)计算已知类别数据集中的点与当前点之间的距离2)按距离递增次序排序3)选取与当前点距离最⼩的k个点4)统计前k个点所在的类别出现的频率5)返回前k个点出现频率最⾼的类别作为当前点的预测分类。
2025-08-06 17:16:28
656
原创 pyqt5-事件
信号与槽是Qt提供的一种高层次通信机制,用于对象之间的解耦连接。当某个动作发生时(如按钮被点击),Qt内部会自动发送一个信号,如果该信号与某个槽函数连接,则该槽函数会被自动调用。信号不一定只能由内部固定事件触发,用户也可以在程序中手动emit一个信号,或者在重写的事件处理函数中发出信号。因此,信号虽然常与事件配合使用,但本质上是可控、可扩展的通信工具。事件是Qt的底层机制,用于处理各种系统交互,如鼠标点击、键盘输入、窗口变化等。
2025-07-15 11:56:10
293
原创 pyQt基础4-对话框
3、页面2组的创建,建立了对应Item的双击信号,建立了一个跳转消息框的槽函数(暂未完成跳转至对应聊天页面的槽函数)2、页面1不同聊天对象名字的切换(暂未完成聊天页面的切换)二、登录界面再次优化。
2025-07-11 21:00:08
343
原创 QT基础2(使用资源文件和ui文件示例以及QMainWindow的入门)
三、使用QTDesigner直接生成ui并读取示例。一、使用资源文件和相对路径的登录界面示例。二、QMainWindow思维导图。
2025-07-09 19:27:00
268
原创 基于gru的seq2seq2 with attention模型
之所以编码的时候计算kv,解码的时候计算q,过程是这样的,编码的时候,把隐藏状态的信息分解为,具体的信息v和对应的k,现在然后解码的时候就需要结合输出的信息,需要解码的隐藏信息,计算q,用q去查询哪个k比较重要,就通过相关性计算即可,实际上就是输出的信息与哪个输入最相关,然后用q找到了重要的k,再把k的信息v拿出来。注意:还有attention初始的qkv本来没有特殊功能,就是三个简单的矩阵而已,功能是通过训练学习出来的参数矩阵,每个参数矩阵都是根据数据算出来的。的权重进行加权融合,形成新的隐藏状态。
2025-05-08 13:40:05
584
原创 因果推断的中常见的内生性问题解释
内生性(Endogeneity)是计量经济学和统计学中一个重要的概念,它指的是模型中的解释变量(自变量)与误差项相关,导致模型估计结果不一致或有偏。
2025-05-07 19:42:18
570
原创 使用resnet34进行猫狗品种识别(pytorch)
class BasicBlock(nn.Module):#残差块expansion = 1 #表示这个基础块不改变通道数#bias用于确定卷积层是否应该包含一个可学习的偏置项,由于后面(self.bn1 = nn.BatchNorm2d(planes))已经进行了归一化,为了防止过拟合这里使用bias=falseself.bn1 = nn.BatchNorm2d(planes)#(批量归一化)#短路连接。
2025-03-30 13:57:58
339
原创 pycharm有时候网络正常也无法更新第三方库版本:
'D:\\anaconda\\envs\\tensorflow\\Lib\\site-packages\\numpy\\fft\\_pocketfft_umath.cp311-win_amd64.pyd' Consider using the `--user` option or check the permissions.可能是jupyter占用了文件导致无法写入,把pycharm关了重新开一遍就好了。
2025-03-27 14:18:36
307
原创 A/B test 介绍
一种,是通过随机分配实验组和对照组来评估干预措施因果效应的一种实验设计方法。它被广泛应用于各个领域,特别是在营销、产品设计以及医学研究中。A/B测试的核心在于通过对照组和实验组的比较来确定干预措施的效果,从而帮助决策者做出数据驱动的决策。
2025-03-21 16:01:44
1086
原创 SyntaxError: Non-UTF-8 code starting with .... 错误
see在wsl接入pycharm中读取文件时碰到。
2025-03-09 09:59:31
506
原创 【学习笔记】VAR模型思路
VAR(P),P值太小可能存在自相关,而且会导致参数估计的非一致性(参数估计的非一致性(Inconsistent Estimation)指的是在统计学中,当样本量趋于无穷大时,参数的估计值并不收敛于参数的真实值);1.稳定性(像脉冲)————>将一个“冲击”加在var模型的某一个方程的过程中,检验这个“冲击过程”是否会随着时间而消失,如果会则是稳定的,如果不会则不稳定。——非真正因果关系,最多是动态的相关关系,表明一个变量对另一个变量是否有预测能力,是真实因果关系的必要非充分条件。
2024-12-09 11:25:06
1259
原创 时间序列基本思路
时间序列分类1:{1.白噪声序列(纯随机性,没有预测的意义)2.平稳非白噪声序列——>AR、MR、ARMA3.非平稳非白噪声序列——>差分——>ARIMA时间序列分类2{1.单变量序列——>ARMA—(如果方差非恒定则进一步)—>GARCH2.多变量序列——>VAR—(如果方差非恒定则进一步)—>MGARCH。
2024-12-09 11:22:12
311
原创 【学习笔记】ARCH和GARCH模型思路
1、输入数据2、数据预处理3、单位根检验(保证平稳性)4、建立条件均值模型5、ARCH效应检验——>扰动项条件方差是否是异方差—(通过)—>LM检验、Q检验、ACF\PACF5、选择并建立ARCH\GARCH(可能常常会基于经验、文献、试验)————————>扰动项分布的选择(t分布、高斯分布等等)————————>滞后阶数的确定(信息准则(可以从2、3阶开始循环)、ACF)————————>非对称效应(非对称最优阶数、......)————————>最优模型建模。
2024-12-09 11:07:48
910
原创 深度学习基本原理的学习理解
权重变化会导致激活值变化,激活值变化导致最后的预测值变化,预测值变化导致损失函数变化 ,梯度下降算法就是反回去一步一步求权重的导数,找到权重变化对损失函数的影响,找到影响最大的那个权重变化方式。即损失函数对前面所有权重的敏感度。给第一层加入各种w权重,根据权重选择激发下一层的进一步结果,机器学习就是学习这些权重具体的值。倒数第二层,只要把各种抽象事物最后根据参数选择激发某个具体的结果然后输出。梯度下降是计算权重应该如何变化和变化的比例应该是多少。sigmoid已经过时,更常用的是relu。
2024-12-03 16:08:50
491
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅