section2.3.2nocows

这道题是一个动态规划问题。我们所关心的树的性质是深度和节点数,所以可以用一张表 table[i][j] 表示节点数为 i、深度为 j 的树的个数。公式为

				table[i][j]+=(table[k][j-1]*table[i-1-k][j-1]);

边界条件是 table[1][j]=1。

但是,这是用 n 个点组成深度最多为 d 的二叉树的方法数,而要求的是恰好是深度为 d 的二叉树,所以要求的方法数 s=table[n][d]-table[n][d-1]。并且又要对9901取模,因此 s=(table[n][d]-table[n][d-1]+v)%v。完整代码如下。

#include<bits/stdc++.h>
using namespace std;
int main (){
	freopen ("nocows.in","r",stdin);
	freopen ("nocows.out","w",stdout);
	int n=0,d=0;
	cin>>n>>d;
	int i=0,j=0,k=0,v=9901;
	long long table[200][100];
	memset(table,0,sizeof(table));
	for (i=1;i<=d;i++){
		table[1][i]=1;
	}
	for (j=2;j<=d;j++){
		for (i=3;i<=n;i++){
			for (k=1;k<=i-2;k++){
				table[i][j]+=(table[k][j-1]*table[i-1-k][j-1]);
			}
			table[i][j]=table[i][j]%v;
		}
	}
	cout<<(table[n][d]-table[n][d-1]+v)%v<<endl;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值