这道题是一个动态规划问题。我们所关心的树的性质是深度和节点数,所以可以用一张表 table[i][j] 表示节点数为 i、深度为 j 的树的个数。公式为
table[i][j]+=(table[k][j-1]*table[i-1-k][j-1]);
边界条件是 table[1][j]=1。
但是,这是用 n 个点组成深度最多为 d 的二叉树的方法数,而要求的是恰好是深度为 d 的二叉树,所以要求的方法数 s=table[n][d]-table[n][d-1]。并且又要对9901取模,因此 s=(table[n][d]-table[n][d-1]+v)%v。完整代码如下。
#include<bits/stdc++.h>
using namespace std;
int main (){
freopen ("nocows.in","r",stdin);
freopen ("nocows.out","w",stdout);
int n=0,d=0;
cin>>n>>d;
int i=0,j=0,k=0,v=9901;
long long table[200][100];
memset(table,0,sizeof(table));
for (i=1;i<=d;i++){
table[1][i]=1;
}
for (j=2;j<=d;j++){
for (i=3;i<=n;i++){
for (k=1;k<=i-2;k++){
table[i][j]+=(table[k][j-1]*table[i-1-k][j-1]);
}
table[i][j]=table[i][j]%v;
}
}
cout<<(table[n][d]-table[n][d-1]+v)%v<<endl;
return 0;
}