python特殊语法:filter、map、reduce、lambda

Python特殊语法:filter、map、reduce、lambda [转]

Python内置了一些非常有趣但非常有用的函数,充分体现了Python的语言魅力!

http://www.cnblogs.com/longdouhzt/archive/2012/05/19/2508844.html


filter(function, sequence):对sequence中的item依次执行function(item),将执行结果为True的item组成一个List/String/Tuple(取决于sequence的类型)返回:
>>> def f(x): return x % 2 != 0 and x % 3 != 0 
>>> filter(f, range(2, 25)) 
[5, 7, 11, 13, 17, 19, 23]
>>> def f(x): return x != 'a' 
>>> filter(f, "abcdef") 
'bcdef'


map(function, sequence) :对sequence中的item依次执行function(item),见执行结果组成一个List返回:
>>> def cube(x): return x*x*x 
>>> map(cube, range(1, 11)) 
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]
>>> def cube(x) : return x + x 
... 
>>> map(cube , "abcde") 
['aa', 'bb', 'cc', 'dd', 'ee']
另外map也支持多个sequence,这就要求function也支持相应数量的参数输入:
>>> def add(x, y): return x+y 
>>> map(add, range(8), range(8)) 
[0, 2, 4, 6, 8, 10, 12, 14]


reduce(function, sequence, starting_value):对sequence中的item顺序迭代调用function,如果有starting_value,还可以作为初始值调用,例如可以用来对List求和:
>>> def add(x,y): return x + y 
>>> reduce(add, range(1, 11)) 
55 (注:1+2+3+4+5+6+7+8+9+10)
>>> reduce(add, range(1, 11), 20) 
75 (注:1+2+3+4+5+6+7+8+9+10+20)


lambda:这是Python支持一种有趣的语法,它允许你快速定义单行的最小函数,类似与C语言中的宏,这些叫做lambda的函数,是从LISP借用来的,可以用在任何需要函数的地方: 
>>> g = lambda x: x * 2 
>>> g(3) 

>>> (lambda x: x * 2)(3) 
6


我们也可以把filter map reduce 和lambda结合起来用,函数就可以简单的写成一行。
例如
kmpathes = filter(lambda kmpath: kmpath,                  
map(lambda kmpath: string.strip(kmpath),
string.split(l, ':')))              
看起来麻烦,其实就像用语言来描述问题一样,非常优雅。
对 l 中的所有元素以':'做分割,得出一个列表。对这个列表的每一个元素做字符串strip,形成一个列表。对这个列表的每一个元素做直接返回操作(这个地方可以加上过滤条件限制),最终获得一个字符串被':'分割的列表,列表中的每一个字符串都做了strip,并可以对特殊字符串过滤。

 

[转] http://hi.baidu.com/black/item/307001d18715fc322a35c747

 

 

---------------------------------------------------------------

 

lambda表达式返回一个函数对象
例子:
func = lambda x,y:x+y
func相当于下面这个函数
def func(x,y):
    return x+y
 
注意def是语句而lambda是表达式
下面这种情况下就只能用lambda而不能用def
[(lambda x:x*x)(x) for x in range(1,11)]
 
map,reduce,filter中的function都可以用lambda表达式来生成!
 
map(function,sequence)
把sequence中的值当参数逐个传给function,返回一个包含函数执行结果的list。
如果function有两个参数,即map(function,sequence1,sequence2)。
 
例子:
求1*1,2*2,3*3,4*4
map(lambda x:x*x,range(1,5))
返回值是[1,4,9,16]
 
reduce(function,sequence)
function接收的参数个数只能为2
先把sequence中第一个值和第二个值当参数传给function,再把function的返回值和第三个值当参数传给
function,然后只返回一个结果。
 
例子:
求1到10的累加
reduce(lambda x,y:x+y,range(1,11))
返回值是55。
 
filter(function,sequence)
function的返回值只能是True或False
把sequence中的值逐个当参数传给function,如果function(x)的返回值是True,就把x加到filter的返回值里面。一般来说filter的返回值是list,特殊情况如sequence是string或tuple,则返回值按照sequence的类型。
 
例子:
找出1到10之间的奇数
filter(lambda x:x%2!=0,range(1,11))
返回值
[1,3,5,7,9]
 
如果sequence是一个string
filter(lambda x:len(x)!=0,'hello')返回'hello'
filter(lambda x:len(x)==0,'hello')返回''
 
内容简介 · · · · · · 《特殊函数概论》较系统地讲述了一些主要的特殊函数,如超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数等。同时也阐明一些在讨论特殊函数时常用的概念和理论,如关于函数的级数展开和无穷乘积展开,渐进展开,线性常微分方程的级数解法和积分解法等,在各章之末还附有习题,习题中包含了一些有用的公式作为《特殊函数概论》正文的补充。 目录 · · · · · · 第一章 函数用无穷级数和无穷乘积展开 1.1 伯努利(Bernoulli)多项式与伯努利数 1.2 欧勒(Euler)多项式与欧勒数 1.3 欧勒一麦克洛临(Euler-Maclaurin)公式 1.4 拉格朗日(Lagrange)展开公式 1.5 半纯函数的有理分式展开,米塔格一累夫勒(Mittag-Leffler)定理 1.6 无穷乘积? 1.7 函数的无穷乘积展开.外氏(Weierstrass)定理 1.8 渐近展开 1.9 拉普拉斯(Laplace)积分的渐近展开.瓦特孙(Watson)引理 1.10 用正交函数组展开 习题 第二章 二阶线性常微分方程 2.1 二阶线性常微分方程的奇点 2.2 方程常点邻域内的解 2.3 方程奇点邻域内的解 2.4 正则解.正则奇点 2.5 夫罗比尼斯(Frobenius)方法 2.6 无穷远点 2.7 傅克斯(Fuchs)型方程 2.8 具有五个正则奇点的傅克斯型方程 2.9 具有三个正则奇点的傅克斯型方程 2.10 非正则奇点.正则形式解 2.11 非正则奇点,常规解和次常规解 2.12 积分解法,基本原理 2.13 拉普拉斯型方程和拉氏变换 2.14 欧勒变换 习题 第三章 伽马函数 3.1 伽马函数的定义 3.2 递推关系 3.3 欧勒无穷乘积公式 3.4 外氏(Weierstrass)无穷乘积 3.5 伽马函数与三角函数的联系 3.6 乘积公式 3.7 围道积分 3.8 欧勒第一类积分.B函数 3.9 双周围道积分 3.10 狄里希累(Dirichlet)积分 3.11 r函数的对数微商 3.12 渐近展开式 3.13 渐近展开式的另一导出法 3.14 里曼(Riemann)函数 3.15 函数的函数方程 3.16 s为整数时之值 3.17 厄密(Hermite)公式 3.18 与伽马函数的联系 3.19 函数的欧勒乘积 3.20 函数的里曼积分 3.21 伽马函数的渐近展开的又一导出法 3.22 函数的计算 习题 第四章 超几何函数 4.1 超几何级数和超几何函数 4.2 邻次函数之间的关系 4.3 超几何方程的其他解用超几何函数表示 4.4 指标差为整数时超几何方程的第二解 4.5 超几何函数的积分表示 4.6 超几何函数的巴恩斯(Barnes)积分表示 4.7 F(a,β,γ,1)之值 …… 第五章 勒让德函数 第六章 合流超几何函数 第七章 贝塞耳函数 第八章 外氏椭圆函数 第九章 忒塔函数 第十章 雅氏椭圆函数 第十一章 拉梅函数 第十二章 马丢函数 附录 附录一 三次方程的根 附录二 四次方程的根 附录三 正交曲面坐标系 参考书目 符号 索引 外国人名对照索引 出版后记
特殊函数计算手册 作者:张善杰,金建铭 著 出版时间:2011年版 内容简介   《特殊函数计算手册》较系统地阐述了各种特殊函数的定义、数学性质、算法、数表和程序。由特定微分方程的解定义的特殊函数有正交多项式(如Chebyshev、Laguerre和Hermite多项式),Gamma函数,Legendre函数类,Bessel函数(如球Bessel、变型Bessel、Ricatti-Bessel函数等),Kelvin函数,Airy函数,Struve函数,超几何函数,抛物柱函数,椭圆柱函数和旋转椭球函数;而由特定积分定义的特殊函数有误差函数、Fresnel积分、变型Fresnel积分、余弦和正弦积分、三类完全和不完全椭圆积分、Jacobi椭圆函数,以及指数积分等。各种特殊函数计算源程序。《特殊函数计算手册》可供从事物理学、力学、应用数学、大气科学,电磁场工程、航空航天工程等学科工程技术、研究人员,以及高等院校理工科本科生、研究生和教师参考。 目录 序言 第1章 Bernoulli和Euler 数 1.1 Bernoulli数 1.2 Euler数 1.3 数表 第2章 正交多项式 2.1 引言 2.2 Chebyshev 多项式 2.3 Laguerre 多项式 2.4 Hermite 多项式 2.5 数值计算 2.6 数值积分应用 2.7 数表 第3章 Gamma,Beta和Psi函数 3.1 Gamma函数 3.2 Beta 函数 3 3 Psi 函数 3.4 不完全Gamma函数 3.5 不完全Beta函数 3.6 数表 第4章 Legendre函数 4.1 引言 4.2 第一类Legendre函数 4.3 第二类Legendre函数 4.4 第一类缔合Legendre函数 4.5 第二类缔合Legendre函数 4.6 任意次的Legendre函数 4.7 数表 第5章 Bessel函数 5.1 引言 5.2 和的计算 5.3 实宗量Bessel函数和的计算 5.4 复宗量Bessel函数和的计算 5.5 任意阶、复宗量的Bessel函数和的计算 5.6 计算的正确性和精度的评估 5.7 Bessel函数的零点 5.8 Lambda函数 5.9 数表 第6章 变型Bessel函数 6.1 引言 6.2 和的计算 6.3 实宗量变型Bessel函数和的计算 6.4 复宗量变型Bessel函数和的计算 6.5 任意阶、复宗量的变型Bessel函数和的计算 6.6 复宗量Hankell函数和的计算 6.7 数表 第7章 Bessel函数的积分 7.1 Bessel函数的简单积分 7.2 变型Bessel函数的简单积分 7.3 曲线和数表 第8章 球Bessel函数 8.1 球Bessel函数 8.2 Riccati-Bessel函数 8.3 变型球Bessel函数 8.4 数表 第9章 Kelvin函数 9.1 引言 9.2 数学性质 9.3 渐近展开式 9.4 数值计算 9.5 Kelvin函数的零点 9.6 数表 第10章 Airy函数 10.1 引言 10.2 数值计算 10.3 数表 第11章 Struve函数 11.1 Struve函数 11.2 变型Struve函数 11.3 数表 第12章 超几何函数和合流超几何函数 12.1 超几何函数的定义 12.2 超几何函数的数学性质 12.3 线性变换公式 12.4 超几何函数的递推关系式 12.5 可表为超几何函数的特殊函数 12.6 超几何函数的数值计算 12.7 合流超几何函数的定义 12.8 合流超几何函数的数学性质 12.9 合流超几何函数的递推关系式 12.10 可表为合流超几何函数的特殊函数 12.11 Whittaker函数的定义 12.12 合流超几何函数的数值计算 12.12 数表 第13章 抛物柱函数 13.1 引言 13.2 抛物柱函数的定义 13.3 主要数学性质 13.4 级数展开式和渐近展开式 13.5 数值计算 13.6 数表 第14章 Mathieu函数 14.1 Mathieu函数的定义 14.2 展开式系数和特征值的确定 14.3 特征值的近似计算 14.4 时Mathieu函数的展开式 14.5 Mathieu函数的数学性质 14.6 变型Mathieu函数的定义 14.7 变型Mathieu函数的数学性质 14.8 数值计算 14.9 数表 第15章 旋转椭球波函数 15.1 旋转椭球座标系 15.2 旋转椭球座标系中波动方程的解 15.3 长旋转椭球角向和径向波函数的定义 15.4 展开式系数和特征值的确定 15.5 第二类长旋转椭球径向波函数小时的计算 15.6 扁旋转椭球角向和径向波函数的定义 15.7 第二类扁旋转椭球径向波函数小时的计算 15.8 数值计算 15.9 数表 第16章 误差函数和Fresnel积分 16.1 误差函数定义 16.2 数值计算 16.3 Gauss概率积分 16.4 Fresnel 积分引言 16.5 Fresnel 积分的幂级数和渐近展开式 16.6 Fresnel 积分的数值计算 16.7 误差函数和Fresnel 积分的零点 16.8 数表 第17章 Cosine和Sine积分 17.1 引言 17.2 幂级数展开式和渐近展开式 17.3 数值计算 17.4 数表 第18章 椭圆积分和Jacobi椭圆函数 18.1 椭圆积分简介 18.2 椭圆积分的级数展开式 18.3 椭圆积分的数值计算 18.4 Jacobi椭圆函数引言 18.5 Jacobi椭圆函数的数值计算 18.6 数表 第19章 指数积分 19.1 引言 19.2 级数展开式和连分式表示式 19.3 有理分式近似式 19.4 数值计算 19.5 数表 第20章 特殊函数计算方法综述 附录 A 几个特殊微分方程的推导 A1 Helmholtz方程和分离变量 A2 圆柱座标系 A3 椭圆柱座标系 A4 抛物柱座标系 A5 旋转椭球座标系 A6 长旋转椭球座标系 A7 扁旋转椭球座标系 A8 抛物座标系 附录 B 非线性方程的求根法 B1 Newton迭代法 B2 改进的Newton迭代法 B3 弦截法 参考文献
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值