一、程序员如何接触 AI 大模型?
-
先学会使用 AI 工具,提高工作效率
AI 不是用来取代程序员的,而是用来 增强你的开发效率!建议从以下几个方面入手:
✅ 代码自动补全:使用 Cursor、Copilot、Tabnine 提升编码速度。
✅ 代码优化 & 调试:用 ChatGPT、Windsurf 进行代码重构和 Bug 诊断。
✅ 文档和 API 查询:让 AI 生成代码注释、编写 API 调用示例。
✅ 自动化脚本:使用 AI 生成 Python / Shell 脚本,简化重复性工作。
✅ 学习新技术:用 AI 快速理解陌生框架或语言。 -
系统学习大模型的原理和应用
如果想更深入了解 AI,可以系统学习以下知识:
📌 基础知识:深度学习、NLP、Transformer 模型(BERT、GPT、LLaMA)
📌 实践编程:掌握 PyTorch、TensorFlow,学习 LLM API(OpenAI API、Hugging Face)
📌 微调 & 部署:了解 LoRA、RLHF、模型微调、私有化部署(如 LlamaIndex)
📌 AI 伦理与安全:AI 代码安全、数据隐私问题
二、技术管理者如何接触 AI 大模型?
-
在工作流的各个环节使用 AI 工具,形成 AI 工具链
技术管理者不仅要自己用 AI,更要推动团队使用 AI,提高整体效率。
可以从以下方面入手:
🔹 需求分析:用 AI 进行市场调研、需求整理,自动生成文档。
🔹 开发:引入 AI 代码补全(Copilot)、自动化测试(AI TestGen)、代码审查(CodeReviewGPT)。
🔹 运维:使用 AI 进行日志分析、故障检测(AIOps)、自动化运维脚本。
🔹 文档与沟通:让 AI 生成技术文档、会议纪要,提高团队协作效率。 -
形成体系化的 AI 战略,提高团队 AI 生产力
✅ 制定 AI 赋能策略:建立 AI 选型指南,让团队高效利用 AI。
✅ AI 工具培训:定期组织 AI 使用培训,让团队成员熟练掌握 AI 工具。
✅ AI + 研发体系:结合 CI/CD,让 AI 自动 Code Review、测试、部署,提高开发速度。
✅ 探索 AI 业务创新:利用大模型优化产品功能,如 AI 客服、智能推荐等。
三、 结论
程序员:先用 AI 提效,再深入学习大模型知识,提升核心竞争力。
技术管理者:推动 AI 工具落地,形成 AI 工具链,体系化赋能团队。
AI 不是未来,它已经是现在,会用 AI 的人,将会更快地取代不会用 AI 的人! 😎