sklearn.discriminant_analysis.LinearDiscriminantAnalysis

本文详细介绍了sklearn库中线性判别分析(LDA)的求解器选择,包括'svd'、'lsqr'和'eigen',并探讨了各种求解器下的收缩参数使用,如'auto'和固定数值。同时,提到了先验概率、降维和计算类协方差矩阵的选项,以及求解过程中的容忍度阈值设定。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

class sklearn.discriminant_analysis.LinearDiscriminantAnalysis(solver=’svd’, 
																shrinkage=None, 
																priors=None, 
																n_components=None, 
																store_covariance=False,
														    	 tol=0.0001)

解算器 : 字符串,可选
要使用的求解器,可能的值:
svd’:奇异值分解(默认)。不计算协方差矩阵,因此建议将此求解器用于具有大量要素的数据。
lsqr’:最小二乘解,可以与收缩相结合。
'eigen’:特征值分解,可以与收缩相结合。
收缩 : 字符串或浮点数,可选
收缩参数,可能的值:

  • None:无收缩(默认)。
  • ‘auto’:使用Ledoit-Wolf引理自动收缩。
  • 在0和1之间浮点数:固定收缩参数。

请注意,缩小仅适用于’lsqr’和’eigen’解算器。

先验 : 数组,可选,形状(n_classes,)
班级先生。

n_components ÿ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值