第三章 内存管理 五、动态分区分配算法(首次适应算法、最佳适应算法、最坏适应算法、临近适应算法)

目录

一、首次适应算法

1、算法思想:

2、如何实现:

3、两种常用的数据结构:

(1)空闲分区表、空闲分区链

4、例子

二、最佳适应算法

1、算法思想:

2、如何实现:

3、例子:

三、最坏适应算法

1、算法思想:

2、如何实现:

3、例子

4、缺点

四、临近适应算法

算法思想:

如何实现:

五、总结


一、首次适应算法

1、算法思想:

每次都从低地址开始查找,找到第一个能满足大小的空闲分区。

2、如何实现:

空闲分区以地址递增的次序排列。每次分配内存时顺序查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。

3、两种常用的数据结构:

(1)空闲分区表、空闲分区链

4、例子

(1)假设我们要插入一个大小为15MB的内存,它会比较空闲区的大小,第一次遇到的空闲区为20MB,所以直接放入。 

二、最佳适应算法

1、算法思想:

由于动态分区分配是一种连续分配方式,为各进程分配的空间必须是连续的一整片区域。因此为了保证当“大进程”到来时能有连续的大片空间,可以尽可能多地留下大片的空闲区,即,优先使用更小的空闲区。

2、如何实现:

空闲分区按容量递增次序链接。每次分配内存时顺序查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。

3、例子:

(1)若我们要插入一个为9MB的进程,就从小到大找空闲区。

(2)插入后,我们要重新对空闲区链表进行排序

三、最坏适应算法

1、算法思想:

算法思想:为了解决最佳适应算法的问题――即留下太多难以利用的小碎片,可以在每次分配时优先使用最大的连续空闲区,这样分配后剩余的空闲区就不会太小,更方便使用。

2、如何实现:

空闲分区按容量递减次序链接。每次分配内存时顺序查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。

3、例子

(1)我们要将大小为3MB的进程插入内存,找到最大的空闲区并存入

4、缺点

每次都选最大的分区进行分配,虽然可以让分配后留下的空闲区更大,更可用,但是这种方式会导致较大的连续空闲区被迅速用完。如果之后有“大进程”到达,就没有内存分区可用了。

四、临近适应算法

算法思想:

首次适应算法每次都从链头开始查找的。

这可能会导致低地址部分出现很多小的空闲分区,而每次分配查找时,都要经过这些分区,因此也增加了查找的开销。

如果每次都从上次查找结束的位置开始检索,就能解决上述问题。

如何实现:

空闲分区以地址递增的顺序排列((可排成一个循环链表)。

每次分配内存时从上次查找结束的位置开始查找空闲分区链(或空闲分区表),找到大小能满足要求的第一个空闲分区。

五、总结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qing_ti_xx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值