大数计算计划——同余周期理论储备

模的线性运算公式

a ≡ b    ( m o d    m ) ⇔ a − b ≡ 0    ( m o d    m ) a ≡ b    ( m o d    m ) ⇔ − a ≡ − b    ( m o d    m ) a ≡ b    ( m o d    m ) ⇔ a + c ≡ b + c    ( m o d    m ) a ≡ b    ( m o d    m ) ⇒ a ⋅ c ≡ b ⋅ c    ( m o d    m ) ( a + b ) ⋅ c ≡ a ⋅ c + b ⋅ c    ( m o d    m ) \begin{aligned} a &\equiv b \; (mod \;m) \Leftrightarrow a-b \equiv 0 \; (mod \;m)\\ a&\equiv b \; (mod \;m) \Leftrightarrow -a \equiv -b \; (mod \;m)\\ a&\equiv b \; (mod \;m) \Leftrightarrow a+c \equiv b+c \; (mod \;m)\\ a&\equiv b \; (mod \;m) \Rightarrow a \cdot c \equiv b \cdot c \; (mod \;m)\\ (a+b)\cdot c&\equiv a\cdot c+ b \cdot c \; (mod \;m) \end{aligned} aaaa(a+b)cb(modm)ab0(modm)b(modm)ab(modm)b(modm)a+cb+c(modm)b(modm)acbc(modm)ac+bc(modm)

定义1 最大公约数

指两个或多个整数共有约数(或因素)中最大的一个。 a a a b b b的最大公约数记为: g c d ( a , b ) gcd(a,b) gcd(a,b)

定义2 互质

a a a b b b互质指 g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)1

定理1 可约公式

已知
a a a b b b c c c为整数, m m m为非零整数, a ⋅ c ≡ b ⋅ c    ( m o d    m ) a\cdot c \equiv b\cdot c \;(mod \;m) acbc(modm)
g c d ( c , m ) = 1 gcd(c,m)=1 gcd(c,m)=1,则 a ≡ b    ( m o d    m ) a\equiv b\;(mod \;m) ab(modm)

证:
∵ a ⋅ c ≡ b ⋅ c    ( m o d    m ) \because a\cdot c \equiv b\cdot c \;(mod \;m) acbc(modm)
∴ ( a − b ) ⋅ c ≡ 0    ( m o d    m ) \therefore (a-b)\cdot c \equiv 0\;(mod \;m) (ab)c0(modm),即 ( a − b ) ⋅ c (a-b)\cdot c (ab)c m m m的倍数

∵ g c d ( m , c ) = 1 \because gcd(m,c)=1 gcd(m,c)=1
∴ \therefore c c c m m m的因素
∴ \therefore 只有 a − b a-b ab m m m的倍数,即 a − b ≡ 0    ( m o d    m ) a-b\equiv 0\;(mod \;m) ab0(modm)
∴ a ≡ b    ( m o d    m ) \therefore a\equiv b\;(mod \;m) ab(modm)

定理 2 拆模公式

a ≡ b    ( m o d    m 1 ⋅ m 2 ) a\equiv b\; (mod \; m_{1} \cdot m_{2}) ab(modm1m2)
a ≡ b    ( m o d    m 1 ) a\equiv b\; (mod \; m_{1} ) ab(modm1) a ≡ b    ( m o d    m 2 ) a\equiv b\; (mod \; m_{2} ) ab(modm2)

证:
∵ a ≡ b    ( m o d    m 1 ⋅ m 2 ) \because a\equiv b\; (mod \; m_{1} \cdot m_{2}) ab(modm1m2)
∴ a = b + m 1 ⋅ m 2 ⋅ x \therefore a=b+m_{1}\cdot m_{2} \cdot x a=b+m1m2x
∴ a ≡ b    ( m o d    m 1 ) , a ≡ b    ( m o d    m 2 ) \therefore a\equiv b\; (mod \; m_{1} ),a\equiv b\; (mod \; m_{2} ) ab(modm1)ab(modm2)

定理3 积模公式

g c d ( m 1 , m 2 ) = 1 gcd(m_{1},m_{2})=1 gcd(m1,m2)=1,则
a ≡ b    ( m o d    m 1 ) 且 a ≡ b    ( m o d    m 2 ) ⇔ a ≡ b    ( m o d    m 1 ⋅ m 2 ) \begin{aligned}a&\equiv b\; (mod \; m_{1} )且a\equiv b\; (mod \; m_{2} ) \\\Leftrightarrow a&\equiv b\; (mod \; m_{1}\cdot m_{2} )\end{aligned} aab(modm1)ab(modm2)b(modm1m2)

证:
(1)由定理2可知,当 a ≡ b    ( m o d    m 1 ⋅ m 2 ) a\equiv b\; (mod \; m_{1} \cdot m_{2}) ab(modm1m2)
⇒ a ≡ b    ( m o d    m 1 ) \Rightarrow a\equiv b\; (mod \; m_{1} ) ab(modm1) a ≡ b    ( m o d    m 2 ) a\equiv b\; (mod \; m_{2} ) ab(modm2)
(2)当 a ≡ b    ( m o d    m 1 ) a\equiv b\; (mod \; m_{1} ) ab(modm1) a ≡ b    ( m o d    m 2 ) a\equiv b\; (mod \; m_{2} ) ab(modm2)
a = b + m 1 ⋅ x a=b +m_{1} \cdot x a=b+m1x,则 a ≡ b + m 1 ⋅ x    ( m o d    m 2 ) a\equiv b+m_{1}\cdot x \; (mod \; m_{2}) ab+m1x(modm2)
∵ a ≡ b    ( m o d    m 2 ) \because a\equiv b\; (mod \; m_{2} ) ab(modm2)
∴ b ≡ b + m 1 ⋅ x    ( m o d    m 2 ) \therefore b\equiv b+m_{1}\cdot x \; (mod \; m_{2}) bb+m1x(modm2)
∴ m 1 ⋅ x ≡ 0    ( m o d    m 2 ) \therefore m_{1}\cdot x\equiv 0 \; (mod \; m_{2}) m1x0(modm2)
∵ g c d ( m 1 , m 2 ) = 1 \because gcd(m_{1},m_{2})=1 gcd(m1,m2)=1
∴ x ≡ 0    ( m o d    m 2 ) \therefore x\equiv 0 \; (mod \; m_{2}) x0(modm2),即 x = m 2 ⋅ y x=m_{2}\cdot y x=m2y
∴ a = b + m 1 ⋅ m 2 ⋅ x    ( m o d    m 2 ) \therefore a=b+m_{1}\cdot m_{2}\cdot x \; (mod \; m_{2}) a=b+m1m2x(modm2)
∴ a ≡ b    ( m o d    m 1 ⋅ m 2 ) \therefore a\equiv b\; (mod \; m_{1}\cdot m_{2} ) ab(modm1m2)

定义3 完全剩余系

整数集合 A A A m m m个元素, A A A中任意两个数 a i , a j a_{i},a_{j} aiaj满足 a i ≠ a j    ( m o d    m ) \begin{aligned} a_{i} \neq a_{j} \; (mod \; m) \end{aligned} ai=aj(modm)则称集合 A A A为 模 m m m的完全剩余系

定理4 完全剩余系同余

整数集合 A A A、整数集合 B B B都是模 m m m的完全剩余系,则
集合 A A A、集合 B B B的元素一一对应且同余。
证:
B i B_{i} Bi B B B的一个元素, A j A_{j} Aj A A A的任意一个元素,
假设存在 B i ≠ A j    ( m o d    m ) B_{i}\neq A_{j}\; (mod \; m) Bi=Aj(modm)
{ A 0 , A 1 , . . . , A m − 1 , B i } \lbrace A_{0},A_{1},...,A_{m-1},B_{i}\rbrace {A0,A1,...,Am1,Bi}也是模 m m m的一个完全剩余系,但该集合元素个数为 m + 1 m+1 m+1,与模 m m m完全剩余系元素个数 m m m矛盾,因此假设错误,所以 B B B的任意一个元素在集合 A A A中能找到一个模 m m m的同余元素,显然根据完全剩余系的定义; B B B的任意一个元素在集合 A A A中最多只有一个模 m m m的同余元素。因此 B B B的任意一个元素在集合 A A A中有且只有一个模 m m m的同余元素,集合 B B B的元素与集合 A A A的元素一一对应且同余,即集合 A A A、集合 B B B的元素一一对应且同余。

定理5 同比例完全剩余系

已知 m , b m,b m,b是整数, m > 1 , g c d ( m , b ) = 1 m>1,gcd(m,b)=1 m>1gcd(m,b)=1 { a 0 , a 1 , . . . , a m − 1 } \lbrace a_{0},a_{1},...,a_{m-1}\rbrace {a0,a1,...,am1}是模 m m m的完全剩余系。
{ b ⋅ a 0 , b ⋅ a 1 , . . . , b ⋅ a m − 1 } \lbrace b\cdot a_{0},b\cdot a_{1},...,b\cdot a_{m-1}\rbrace {ba0,ba1,...,bam1}也是模 m m m的完全剩余系。
证:
假设当 a i ≠ a j a_{i}\neq a_{j} ai=aj时,存在 b ⋅ a i ≡ b ⋅ a j    ( m o d    m ) b\cdot a_{i} \equiv b\cdot a_{j} \;(mod \; m) baibaj(modm)
∵ g c d ( b , m ) = 1 \because gcd(b,m)=1 gcd(b,m)=1
∴ a i ≡ a j    ( m o d    m ) \therefore a_{i} \equiv a_{j} \;(mod \; m) aiaj(modm)
∵ { a 0 , a 1 , . . . , a m − 1 } \because \lbrace a_{0},a_{1},...,a_{m-1}\rbrace {a0,a1,...,am1}是模 m m m的完全剩余系
∴ a i ≠ a j    ( m o d    m ) \therefore a_{i} \neq a_{j} \; (mod \; m) ai=aj(modm) ,前后矛盾,因此假设错误。
所以当 a i ≠ a j a_{i}\neq a_{j} ai=aj时,不存在 b ⋅ a i ≡ b ⋅ a j    ( m o d    m ) b\cdot a_{i} \equiv b\cdot a_{j} \;(mod \; m) baibaj(modm)
因此 { b ⋅ a 0 , b ⋅ a 1 , . . . , b ⋅ a m − 1 } \lbrace b\cdot a_{0},b\cdot a_{1},...,b\cdot a_{m-1}\rbrace {ba0,ba1,...,bam1}也是模 m m m的完全剩余系。

定理6 费马小定理(幂周期定理)

p p p是素数, g c d ( p , a ) = 1 gcd(p,a)=1 gcd(p,a)=1,则
a p − 1 ≡ 1    ( m o d    p ) \begin{aligned}a^{p-1}\equiv 1\; (mod \; p)\end{aligned} ap11(modp) 证:构造 p p p完全剩余系 A = { 0 , 1 , 2 , . . . , p − 1 } A=\lbrace0,1,2,...,p-1\rbrace A{0,1,2,...,p1}
∵ g c d ( p , a ) = 1 \because gcd(p,a)=1 gcd(p,a)=1
∴ { 0 , a , 2 a , . . . , ( p − 1 ) ⋅ a } \therefore \lbrace0,a,2a,...,(p-1)\cdot a\rbrace {0,a,2a,...,(p1)a}也是 p p p的完全剩余系
∴ \therefore 根据定理4(完全剩余系同余)有:
1 ⋅ 2 ⋅ ⋅ ⋅ ( p − 1 ) ≡ a ⋅ 2 a ⋅ ⋅ ⋅ ( a ⋅ ( p − 1 ) )    ( m o d    p ) 1\cdot2\cdot \cdot\cdot (p-1)\equiv a\cdot 2a\cdot \cdot\cdot (a\cdot(p-1))\; (mod \; p) 12(p1)a2a(a(p1))(modp)
⇒ ( p − 1 ) ! ≡ a p − 1 ( p − 1 ) !    ( m o d    p ) \Rightarrow (p-1)!\equiv a^{p-1}(p-1)! \; (mod \; p) (p1)!ap1(p1)!(modp)
∵ \because ( p − 1 ) ! (p-1)! (p1)! p p p互质,根据定理1(可约公式,
可得 a p − 1 ≡ 1    ( m o d    p ) a^{p-1}\equiv 1\; (mod \; p) ap11(modp)

定理7 最小公倍幂周期

已知 p 1 , p 2 , . . . , p k p_{1},p_{2},...,p_{k} p1,p2,...,pk k k k个不同的素数, m = ∏ i = 0 k p i m=\displaystyle \prod_{i=0}^{k} p_{i} m=i=0kpi g c d ( m , a ) = 1 gcd(m,a)=1 gcd(m,a)=1 t t t p 1 − 1 , p 2 − 1 , . . . , p k − 1 p_{1}-1,p_{2}-1,...,p_{k}-1 p11,p21,...,pk1的最小公倍数,
a t ≡ 1    ( m o d    m ) a^t\equiv 1 \; (mod \;m) at1(modm)

定理8 降幂定理

p p p是素数, n n n是整数,则 n p ≡ n    ( m o d    p ) n^{p}\equiv n\;(mod \; p) npn(modp)

证:
g c d ( n , p ) = 1 gcd(n,p)=1 gcd(n,p)=1时, n p − 1 ≡ 1    ( m o d    p ) n^{p-1}\equiv 1\;(mod \; p) np11(modp)
⇒ n p ≡ n    ( m o d    p ) \Rightarrow n^{p}\equiv n\;(mod \; p) npn(modp)
g c d ( n , p ) ≠ 1 gcd(n,p)\neq1 gcd(n,p)=1时,因 p p p是素数,所以 n n n的因子必然有 p p p,即 n = q ⋅ x n=q\cdot x n=qx,此时显然 n p ≡ n ≡ 0    ( m o d    p ) n^{p}\equiv n\equiv 0\;(mod \; p) npn0(modp)

定理9

已知 p p p是素数, g c d ( p , a ) = 1 gcd(p,a)=1 gcd(p,a)=1 a t ≡ 1    ( m o d    p k ) a^t\equiv 1\;(mod \;p^k) at1(modpk) t < p k t<p^{k} t<pk
p k − 1 ( p − 1 ) ≡ 0    ( m o d    t ) p^{k-1}(p-1)\equiv 0\;(mod \;t) pk1(p1)0(modt)

定理10

已知 p 1 , p 2 , . . . , p k p_{1},p_{2},...,p_{k} p1,p2,...,pk为两两互质的 k k k个整数, m = ∏ i = 0 k p i m=\displaystyle \prod_{i=0}^{k}p_{i} m=i=0kpi,
∏ i = 0 k ( p i − 1 ) ≡ 0    ( m o d    r ) \displaystyle \prod_{i=0}^{k}(p_{i}-1)\equiv 0\;(mod \;r) i=0k(pi1)0(modr) g c d ( a , m ) = 1 gcd(a,m)=1 gcd(a,m)=1,则

a p 1 − 1 ) … ( p k − 1 ) r ≡ 1    ( m o d    m ) a^{\frac{\displaystyle p_{1}-1)\ldots(p_{k}-1)}{\displaystyle r}}\equiv 1 \;(mod\;m) arp11)(pk1)1(modm)

定义4 函数的完全剩余

函数 f ( x ) f(x) f(x) m m m的剩余集合 A A A称为函数 f ( x ) f(x) f(x) m m m的完全剩余
函数 f ( x ) f(x) f(x) m m m的完全剩余的元素个数记为 L ( f ( x ) , m ) L(f(x),m) L(f(x),m)
(1)若 g c d ( c , m ) = 1 gcd(c,m)=1 gcd(c,m)=1,则 L ( c ⋅ f ( x ) ) = L ( f ( x ) , m ) L(c\cdot f(x))=L(f(x),m) L(cf(x))=L(f(x),m)
(2)若 m ≡ 0    ( m o d    c ) m\equiv0 \;(mod \; c) m0(modc),则 L ( c ⋅ f ( x ) ) = L ( f ( x ) , m c ) L(c\cdot f(x))=L(f(x),\frac{m}{c}) L(cf(x))=L(f(x),cm)
(3) y ≡ f ( x )    ( m o d    m ) y\equiv f(x)\;(mod \;m) yf(x)(modm),若 x x x递增, y y y值按照一种元素顺序按序依次排列,则称该函数为连续的。
(4) y = f ( x ) y=f(x) y=f(x)连续,则 y ′ ≡ f ( x )    ( m o d    m ) y'\equiv f(x)\;(mod \;m) yf(x)(modm)连续,反之不一定。
(5) y ≡ f ( x )    ( m o d    m ) y\equiv f(x)\;(mod \;m) yf(x)(modm)连续,则该函数是周期函数,周期为 L ( f ( x ) , m ) L(f(x),m) L(f(x),m)
(6)当 f ( x ) f(x) f(x) m m m的剩余元素与 m m m互质,且 L ( f ( x ) , m ) = φ ( m ) L(f(x),m)=\varphi(m) L(f(x),m)=φ(m),其中 φ ( m ) \varphi(m) φ(m)为欧拉函数,称 f ( x ) f(x) f(x)为模 m m m的质函数。
(7)当 f ( x ) f(x) f(x) m m m可约,则 f ( x ) f(x) f(x)不是模 m m m的质函数。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值