基于图像的相机网络分布式定位与自适应传感器管理算法
1. 相机网络分布式定位算法
在相机网络中,成本函数 $\phi$ 由两部分组成:仅涉及旋转的 $\phi_R$ 和涉及所有变量(包括 ${\lambda_{ij}}$)的 $\phi_T$。由于相对平移只能估计到一个正的比例因子,即 $\tilde{T} {ij} = \lambda {ij} \tilde{t} {ij}$,这些变量是必要的。然而,未知比例 ${\lambda {ij}}$ 会产生不良副作用。若将平凡解 $T_i = T_j$($i,j \in V$)和 $\lambda_{ij} = 0$($(i,j) \in E$)代入相关公式,无论旋转值如何,都能得到全局最小值 $\phi_T = 0$。因此,若在无约束条件下最小化该公式,可能得到无意义的定位结果。为解决此问题,我们提出约束最小比例为 $\lambda_{ij} \geq 1$($\forall(i,j) \in E$),这是一个全局约束,但每个节点可单独执行,从而实现分布式处理。
为了以分布式方式最小化 $\phi({R_i},{T_i},{\lambda_{ij}})$ 并满足 $\lambda_{ij} \geq 1$($\forall(i,j) \in E$)的条件,我们采用多步解决方案:
1. 旋转估计
- 每个节点 $k$ 计算 $\phi_R$ 关于其旋转 $R_k$ 的梯度:
[
grad_{R_k}\phi_R = -R_k \sum_{i \in N_k} \left( \log \left( R_k^T R_i \tilde{R}