33、基于图像的相机网络分布式定位与自适应传感器管理算法

基于图像的相机网络分布式定位与自适应传感器管理算法

1. 相机网络分布式定位算法

在相机网络中,成本函数 $\phi$ 由两部分组成:仅涉及旋转的 $\phi_R$ 和涉及所有变量(包括 ${\lambda_{ij}}$)的 $\phi_T$。由于相对平移只能估计到一个正的比例因子,即 $\tilde{T} {ij} = \lambda {ij} \tilde{t} {ij}$,这些变量是必要的。然而,未知比例 ${\lambda {ij}}$ 会产生不良副作用。若将平凡解 $T_i = T_j$($i,j \in V$)和 $\lambda_{ij} = 0$($(i,j) \in E$)代入相关公式,无论旋转值如何,都能得到全局最小值 $\phi_T = 0$。因此,若在无约束条件下最小化该公式,可能得到无意义的定位结果。为解决此问题,我们提出约束最小比例为 $\lambda_{ij} \geq 1$($\forall(i,j) \in E$),这是一个全局约束,但每个节点可单独执行,从而实现分布式处理。

为了以分布式方式最小化 $\phi({R_i},{T_i},{\lambda_{ij}})$ 并满足 $\lambda_{ij} \geq 1$($\forall(i,j) \in E$)的条件,我们采用多步解决方案:
1. 旋转估计
- 每个节点 $k$ 计算 $\phi_R$ 关于其旋转 $R_k$ 的梯度:
[
grad_{R_k}\phi_R = -R_k \sum_{i \in N_k} \left( \log \left( R_k^T R_i \tilde{R}

内容概要:本文介绍了悬臂梁的有限元分析方法,重点采用多重网格高斯-赛德尔迭代法对有限元方程进行求解,并提供了完整的Matlab代码实现。文中详细阐述了有限元法的基本原理、网格划分策略、刚度矩阵组装、边界条件处理以及多重网格加速技术在提升高斯-赛德尔迭代效率方面的应用,有效提高了数值求解的收敛速度和计算效率。该方法适用于结构力学中的静态位移应力分析,具有较强的工程应用价值。; 适合人群:具备有限元理论基础和Matlab编程能力的力学、土木、机械等工程领域研究生或科研人员;从事结构仿真数值计算相关工作的技术人员;希望深入理解多重网格加速算法在工程问题中应用的学者。; 使用场景及目标:①掌握悬臂梁结构的有限元建模流程;②理解并实现高斯-赛德尔迭代法及其多重网格加速技术;③悬臂梁的有限元分析,采用多重网格高斯-赛德尔方法求解(Matlab代码实现)通过Matlab编程实践提升对数值方法结构分析耦合机制的认识;④为复杂结构的高效求解提供可复用的算法框架代码参考。; 阅读建议:建议读者结合有限元教材同步学习,先理解基本理论再调试代码,重点关注刚度矩阵的构建边界条件施加方式,并尝试调整网格密度和材料参数以观察对结果的影响,从而深化对数值稳定性和精度的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值