[SD实战]实现人物写真背景图像融合,深度剖析蒙版重绘与CN局部重绘实战

在摄影与[图像处理]领域,人物写真背景图像融合一直是技术难点。传统方法往往难以实现自然且富有艺术感的融合效果。然而,随着深度学习技术的发展,蒙版重绘与CN局部重绘技术为我们提供了全新的思路。本文将带你深入剖析这两种技术的实战应用,探索如何将人物与背景完美融合,实现令人惊叹的艺术效果。
在这里插入图片描述

今天实战介绍SD人物换背景 。在实际写真场景中,涉及切换人物背景图并融合。我们这里使用图生图-蒙版重绘ControlNet
局部重绘
实现背景图的融合。

人物蒙版制作

在这里需要首先安装SD插件:sd-webui-inpaint-anything 插件操作提取蒙版。

插件的安装地址为:(需要的同学可以自行扫描获取)

然后利用sd-webui-inpaint-anything
插件制作并提取人物蒙版,可以根据页面提示操作和精修,然后我们就可以获得精修后的人物蒙版遮挡图像。

人物案例图像

获取人物蒙版

人物写真换背景

上传重绘蒙版

到这一步,我们就可以进入SD图生图 界面,在上传重绘蒙版
标签页,分别上传被切换原始人物写真图像和上一步提取的人物蒙版遮罩。相关配置如下所示:

ControlNet局部重绘

同时,还需要配置ControlNet局部重绘 ,上传背景图像实现人物的融合。这里需要选择局部重绘
inpaint_only+lama 预处理器和control_v11p_sd15_inpaint
ControlNet处理器。配置如下所示:

融合效果

点击生成 按钮,就可以得到相应的融合背景图像:

更多背景融合案例

本文绘图配置如下所示:

• 绘图模型:AWPortrait_v1.4

• 采样方法:DPM++ 2M Karras

• 迭代步数:30步

• 分辨率:512* 768

• 提示词引导系数 (CFG Scale):7

• 放大算法:4x-UltraSharp 2X放大

• 启用ADetailer 修复脸部和手部细节。

本文涉及模型下载地址:(需要的小伙伴可以文末自行扫描获取)

AWPortrait

AgainStyle3_Lotus_荷花荷叶效果 LoRA模型

01

lora:AgainStyle3_Lotus:1,AgainStyle3 Lotus,no
humans,outdoors,scenery,day,white flower,sky,blue sky,sunlight,lotus,still
life,green flower,plant,water,bud,realistic,leaf,lily pad,cloud,

背景图想

融合图像

02

lora:AgainStyle3_Lotus:1,AgainStyle3 Lotus,no
humans,flower,sky,outdoors,day,blue sky,blurry,cloud,scenery,depth of
field,red flower,still life,blurry background,orange
flower,sunlight,water,realistic,lens flare,

背景图想

融合图像

生成图后,如果存在边缘融合不充分的,可以采用图生图0.3~0.5低幅度重绘,并结合tiled diffusion和tiled
VAE插件和ControlNet tile模型进行细节的修复和增强。

资料软件免费放送

次日同一发放请耐心等待

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!
在这里插入图片描述

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

在这里插入图片描述

### SD 局部无效解决方案 #### 参数调整工具优化 对于SD web-ui中的局部功能,确实存在一些用户体验上的挑战[^1]。为了提高局部的效果,在实际应用过程中可以尝试以下几个方面: - **精确选取颜色**:利用第三方软件如FastStone Capture的取色笔功能获取目标区域的颜色,并对需要修改的部分进行细致涂抹。这一步骤能够确保后续处理时色彩的一致性和准确性[^2]。 - **合理设置参数**:点在于控制好幅度(建议初始值设为0.3)、模糊度(推荐值为2),以及选择合适的区域内内容处理方式——这里提到的是基于原图的方式最为稳妥。此外,采用OpenPose+Canny算法可以帮助更好地限定人体姿态和边缘细节,从而提升最终图像的质量。 #### 多次迭代生成最佳结果 值得注意的是,即使经过上述优化措施,也可能无法一次性获得理想的结果。因此,有必要反复执行生成过程并从中筛选出最满意的作品。这种方法虽然耗时较长,但在当前技术条件下仍是实现高质量输出的有效途径之一[^5]。 ```python def refine_local_redraw(image, iterations=5): best_image = None highest_score = 0 for _ in range(iterations): new_image = apply_redrawing_techniques(image) score = evaluate_quality(new_image) if score > highest_score: highest_score = score best_image = new_image return best_image ``` 此函数展示了如何通过多次迭代寻找最优解的过程,其中`apply_redrawing_techniques()`代表具体实施操作的方法,而`evaluate_quality()`则是评估每轮生成图片质量的标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值