8.多图像的质量增强
在本章中,我们提出了一种技术,该技术采用多幅眼底图像来获得单个更高质量的图像,去除了神经纤维层(NFL)或相机镜头相关的反射伪影的影响,补偿了次优照明。去除亮伪影,对于自动或手动检查视网膜病变时减少假阳性有很大好处。眼底图像是通过改变患者的凝视点但保持摄像机固定来采集的。在拍摄时,所有视网膜结构的表观形状和位置(例如:明亮伪影)变化不表现出各向同性反射,本文算法利用了这种物理效应。部分工作已在Giancardo等人(2011a)的著作中发表。
Giancardo等人(2011a):Automatic quality enhancement and nerve fibre layer artefacts removal in retina fundus images by off axis imaging
8.1简介
在本章中,介绍了一种新型后处理(post-processing)技术的早期结果,该技术能够去除由于神经纤维层(NFL)或相机镜头污点造成的反射伪影。该方法还可以自动识别照明不足/曝光过度区域,并通过用其他图像上的冗余信息替换它们进行补偿(如果可用)。这可以从稍微不同的角度捕捉同一对象的冗余图像来实现。这具有改变反射伪影特性的效果。
虽然各小组已经建立了自动评估眼底图像质量的算法(见第3章和第2.2.5节),但据我们所知,很少或没有发表过提高采集后视网膜图像质量的工作。第2.2.2节介绍了各种图像均衡技术,但未尝试去除NFL伪影或利用同一患者的多幅图像。这部分是因为这种类型的反射伪影仅在最近几年才变得更加明显,眼底照相机不需要通过使用散瞳滴眼液来扩张瞳孔,并且待筛查的患者年龄越来越小。事实上,非散瞳眼底相机需要高功率闪光灯,以允许足够的光进入未完全扩张的瞳孔。这增加了发生任何类型反射伪影的概率,尤其是在NFL较厚的区域。这种不良影响在年轻患者中更明显,因为NFL厚度(也是反射率)随着年龄的增长而降低。
神经纤维层(NFL)是视网膜的内层,眼底照相的血管是脉络膜的血管。 |
另一方面,基于同一对象的冗余图像的图像质量增强并不新鲜。许多作者已经开发了超分辨率算法来从多个低分辨率图像中创建单个高分辨率图像。如Farsiu等人(2006),Park等人(2003),但是,这些技术在提高分辨率方面非常具体,虽然它们可以处理模糊和椒盐噪声,但似乎不适合去除大面积结构,如NFL反射。
在第8.2节中,介绍了采集视网膜图像以及所实现的视觉效果的协议;第8.3节描述了算法;第8.4节介绍了获得的结果,第8.5节对此进行了讨论。
8.2图像采集
NFL与视网膜其他部分的区别在于其物理反射特性。当与相机闪光波阵面相互作用时,NFL表现出相当大的镜面反射,而视网膜的其余部分很大程度表现为漫反射。这意味着只要入射角不同,照射到NFL同一区域的两束光的能量,将几乎完全反射到两个不同的方向。图像传感器上表现为是一种明亮的伪影,其出现或消失取决于光的入射角度。这种效应在视网膜的其他区域并不明显,这些区域表现出漫反射行为,无论光线的入射角度如何,光能在所有方向上都有很大程度的反射(能量减少)。
对于眼底成像来说,因为成像的视网膜表面有限(在我们的设置中直径约为7mm),并且所有的光都必须穿过瞳孔,所以很难改变光的入射角度,如图8.1所示。幸运的是,现代眼底相机有一个手动可变的固定点,这使得每当患者凝视视网膜时,视网膜都可以自然对齐,如图8.1(a-b)所示。如果我们改变注视点的位置,来自闪光灯的波阵面的入射角就会改变,因此,任何改变注视目标的眼底照相机都可以轻易实现前面描述的效果。
在我们的实验中,要求一个没有经验的操作者随机确定注视目标,在不考虑质量的情况下捕获七幅图像,这些图像如图8.5所示。可以注意到不同位置的反射伪像的出现和消失,如图8.5上手动标记的符号所示,分别用绿色和黄色显示NFL