前言
最近在重温之前写过的剑指offer的代码,不得不说现在无论是社招还是校招,从搞java的到搞python的,都会被问点数据结构和算法类的题目。个人认为《剑指offer》编得相当不错,如果真的能扎扎实实搞懂里面的题目的话,应付中小厂的面试基本不会有什么问题。不过落落本身是搞数据和模型的,对数据结构和计算机类知识底子较薄,所以写出来的玩意只能拿来讨论参考。
在这一系列的笔记正式开始之前,先写一篇预备的知识。《剑指offer》涉及若干和链表与二叉树相关的题目,在这里我们先给出链表与树的定义,方便以后的解题。
二叉树
树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可用树形象表示。树在计算机领域中也得到广泛应用,如在编译源程序如下时,可用树表示源源程序如下的语法结构。又如在数据库系统中,树型结构也是信息的重要组织形式之一。二叉树(Binary tree)则是树形结构的一个重要类型。许多实际问题抽象出来的数据结构往往是二叉树形式,即使是一般的树也能简单地转换为二叉树,而且二叉树的存储结构及其算法都较为简单,因此二叉树显得特别重要。二叉树特点是每个结点最多只能有两棵子树,且有左右之分。
在《剑指offer》中,我们定义一个二叉树的类。先定义节点,然后再定义树。:
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
class BinaryTree:
def __init__(self, rootObj):
self.key = rootObj
self.left = None
self.right = None
def insertLeft(self, newNode): # 左节点插入
if self.left == None:
self.left = BinaryTree(newNode)
else:
t = BinaryTree(newNode)
t.left = self.left
self.left = t
def insertRight(self, newNode): # 右节点插入
if self.right == None:
self.right = BinaryTree(newNode)
else:
t = BinaryTree(newNode)
t.right = self.right
self.right = t
def getRightChild(self): # 右子节点
return self.right
def getLeftChild(self): # 左子节点
return self.left
def setRootVal(self, obj): # 设置根节点
self.key = obj
def getRootVal(self): # 获取根节点
return self.key
链表
链表是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成。每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域。 相比于线性表顺序结构,操作复杂。由于不必须按顺序存储,链表在插入的时候可以达到O(1)的复杂度,比另一种线性表顺序表快得多,但是查找一个节点或者访问特定编号的节点则需要O(n)的时间,而线性表和顺序表相应的时间复杂度分别是O(logn)和O(1)。
在《剑指offer》中,我们尝试定义链表:
class ListNode(): # 定义链表节点
__slots__ = ['val', 'next']
def __init__(self, x):
self.val = x
self.next = None
def getItem(self):
return self.val
def getNext(self):
return self.next
def setItem(self, newitem):
self.val = newitem
def setNext(self, newnext):
self.next = newnext
class LinkList(): # 定义单链表
def __init__(self):
self.head = None # 初始化为空链表
def isEmpty(self): # 是否为空
return self.head == None
def size(self): # 链表长度
current = self.head
count = 0
while current != None:
count += 1
current = current.getNext()
return count
def travel(self):
current = self.head
while current is not None:
print(current.val)
current = current.next
return
def add(self, item): # 在链表前端添加元素
temp = ListNode(item)
temp.setNext(self.head)
self.head = temp
def append(self, item): # 在链表末端添加元素
temp = ListNode(item)
if self.isEmpty():
self.head = temp # 若为空表,将添加的元素设为第一个元素
else:
current = self.head
while current.getNext() != None:
current = current.getNext() # 遍历链表
current.setNext(temp) # 此时current为链表最后的元素
def search(self, item): # 检索元素是否在链表中
current = self.head
founditem = False
while current != None and not founditem:
if current.getItem() == item:
founditem = True
else:
current = current.getNext()
return founditem
def index(self, item): # 索引元素在链表中的位置
current = self.head
count = 0
found = None
while current != None and not found:
count += 1
if current.getItem() == item:
found = True
else:
current = current.getNext()
if found:
return count
else:
raise (ValueError, '%s is not in linkedlist' % item)
def remove(self, item): # 删除链表中的某项元素
current = self.head
pre = None
while current != None:
if current.getItem() == item:
if not pre:
self.head = current.getNext()
else:
pre.setNext(current.getNext())
break
else:
pre = current
current = current.getNext()
def insert(self, pos, item): # 插入元素
if pos <= 1:
self.add(item)
elif pos > self.size():
self.append(item)
else:
temp = ListNode(item)
count = 1
pre = None
current = self.head
while count < pos:
count += 1
pre = current
current = current.getNext()
pre.setNext(temp)
temp.setNext(current)
小结
作为数据结构中最最常出现的两种结构,掌握它们是开启《剑指offer》篇章的基础。