bzoj5017 [Snoi2017]炸弹(tarjan缩点+拓扑序dp+线段合并+线段树优化建图)

首先我们可以发现每个点能引爆的炸弹是一个连续的区间。相邻的点能引爆的区间肯定不会相离。每个点向他能引爆的点连边,建出一张有向图,Tarjan缩点(一个scc内的点都可以互达,合并他们能到达的区间即可),然后拓扑序倒序dp即可。转移相当于线段合并。每个点记录他最后能引爆的区间,答案就是区间大小。
可是我们最坏情况有 O(n2) 条边,无论是时间上还是空间上都是无法接受的。还好我们每个点能连向的点是一个连续的区间,我们可以利用线段树来优化建图,把每个区间分成最多logn个线段树上的点。这样我们就有O(nlogn)的边数和点数了。线段树上的节点之间也要有边。所以边数就是最坏nlogn+2n了。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 500010
#define mod 1000000007
inline ll read(){
    ll x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int n,L1[N<<2],R1[N<<2],h[N<<2],num=0,tot=0,in[N<<2],q[N<<2],h1=0,t=0;
ll pos[N],rg[N],ans=0;
int dfn[N<<2],low[N<<2],dfnum=0,scc,bel[N<<2],L[N<<2],R[N<<2],id[N];
bool inq[N<<2];
struct edge{
    int fr,to,next;
}data[N*20];
inline void add(int x,int y){
    if(x==y) return;
    data[++num].to=y;data[num].next=h[x];h[x]=num;data[num].fr=x;
}
inline void build(int p,int l,int r){
    tot=max(tot,p);L1[p]=l;R1[p]=r;
    if(l==r){id[l]=p;return;}int mid=l+r>>1;
    build(p<<1,l,mid);build(p<<1|1,mid+1,r);
    add(p,p<<1);add(p,p<<1|1);
}
inline void ask(int p,int l,int r,int x,int y,int s){
    if(x<=l&&r<=y){add(s,p);return;}
    int mid=l+r>>1;
    if(x<=mid) ask(p<<1,l,mid,x,y,s);
    if(y>mid) ask(p<<1|1,mid+1,r,x,y,s);
}
stack<int>qq;
inline void tarjan(int x){
    dfn[x]=low[x]=++dfnum;qq.push(x);inq[x]=1;
    for(int i=h[x];i;i=data[i].next){
        int y=data[i].to;
        if(!dfn[y]) tarjan(y),low[x]=min(low[x],low[y]);
        else if(inq[y]) low[x]=min(low[x],dfn[y]);
    }if(dfn[x]==low[x]){
        ++scc;L[scc]=inf;
        while(1){
            int y=qq.top();qq.pop();inq[y]=0;bel[y]=scc;
            L[scc]=min(L[scc],L1[y]);R[scc]=max(R[scc],R1[y]);
            if(y==x) break;
        }
    }
}
int main(){
//  freopen("a.in","r",stdin);
    n=read();for(int i=1;i<=n;++i) pos[i]=read(),rg[i]=read();
    build(1,1,n);
    for(int i=1;i<=n;++i){
        int l=lower_bound(pos+1,pos+n+1,pos[i]-rg[i])-pos;
        int r=upper_bound(pos+1,pos+n+1,pos[i]+rg[i])-pos-1;
        if(l==r) continue;ask(1,1,n,l,r,id[i]);
    }for(int i=1;i<=tot;++i) if(!dfn[i]) tarjan(i);memset(h,0,sizeof(h));
    for(int i=1;i<=num;++i){
        int x=data[i].fr,y=data[i].to;
        if(bel[x]==bel[y]) continue;in[bel[y]]++;
        data[i].fr=bel[x];data[i].to=bel[y];data[i].next=h[bel[x]];h[bel[x]]=i;
    }for(int i=1;i<=scc;++i) if(!in[i]) q[++t]=i;
    while(h1<t){
        int x=q[++h1];
        for(int i=h[x];i;i=data[i].next){
            int y=data[i].to;if(--in[y]==0) q[++t]=y;
        }
    }for(int ii=scc;ii>=1;--ii){
        int x=q[ii];
        for(int i=h[x];i;i=data[i].next){
            int y=data[i].to;L[x]=min(L[x],L[y]);R[x]=max(R[x],R[y]);
        }
    }for(int i=1;i<=n;++i) ans=(ans+(ll)i*(R[bel[id[i]]]-L[bel[id[i]]]+1))%mod;
    printf("%lld\n",ans);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值