论文精读: NC Kagome ScV6Sn6竞争CDW起源

图片

Nat Commun 15, 10428 (2024).

https://doi.org/10.1038/s41467-024-54702-3

摘要节选

双层kagome金属ScV6Sn6中的竞争电荷密度波(CDW)序的起源仍未被充分理解。

实验结果表明,冷却过程中,波矢量q2 =( 1/3, 1/3, 1/2)的短程序,被长程q3 = (1/3, 1/3, 1/3)的 CDW序的在较低温度下抑制。

然而,理论上,q2 CDW被预测为基态,这中现象难以被解释。

本文利用非简谐声子-声子计算结合密度泛函理论,预测了温度驱动的结构相变,从高温原始相到q2 CDW,然后是低温q3 CDW,解释了实验观察结果。证明了半核心电子态使得q3 CDW更稳定。

此外,发现面外晶格参数可以对竞争的CDW产生调控效果,因此提出压缩双轴应变作为稳定q2 CDW的实验方案。在Sn位点掺杂Ge或Pb可以作为调控CDW稳定性的潜在途径。

引言

kagome材料的典型电子能带结构包括狄拉克点、平带和van Hove奇点,它们是各种结构和电子不稳定性的丰富来源。在代表性的kagome金属AV3Sb5(A=K、Rb和Cs)中观察到了奇异的电子态,如超导性、电荷密度波(CDW)、对密度波、非平凡拓扑态、和电子向列性。其中,CDW态表现出非常规性质,包括时间反转和旋转对称性破坏,以及与超导性的非常规相互作用,其特征是双超导圆顶。这引发了极大的兴趣和争议,促使人们探索其他候选材料,以全面了解kagome材料中的CDW状态。

在RV6Sn6系列中,非磁性ScV6Sn6化合物是被报道经历CDW转变的化合物,这种转变发生在T-CDW≈92 K以下。

波矢量q3 = (1/3, 1/3, 1/3),通常被描述为对应于实空间中的√3×√3×3周期性,已通过x射线衍射(XRD)、中子衍射和非弹性x射线散射(IXS)被确定为CDW态的有序矢量。扫描隧道显微镜和角分辨光电子能谱等表面敏感技术同样可证实平面内√3×√3的周期性。CDW畸变主要由Sc和Sn原子的平面外位移表现出的强烈的电子-声子耦合决定。

在T-CDW之上检测到q2 =( 1/3, 1/3, 1/2)的短程序,对应于√3×√3×2周期,在T-CDW之下时随着q3 CDW形成受到抑制。

密度泛函理论(DFT)计算发现,q2 CDW阶是最低能量基态,与实验结果矛盾

现有的各种机制包括构型熵、有序-无序机制和平坦声子软模的波动来解释观察到的q3-CDW基态,这些场景基于谐波声子色散,其表现出多个虚声子模,并且缺少能够定量解释从q2阶到q3 CDW阶的温度驱动相变的理论。此外,包含电子温度的DFT计算中跃迁被高估了数千度也不足以预测观测到的CDW跃迁。理论模型和实验观测之间的这些差异对全面理解双层kagome金属中的CDW态构成了关键挑战。

在这项工作中,基于非谐声子-声子相互作用和电荷序的温度依赖说明q2序发生在更高的温度下,低温下被q3序抑制。计算获得了相图来比较了两个电荷阶数随平面内和平面外晶格参数的变化,并提出了一条明确的途径,即使用压缩双轴应变来实现稳定q2波矢量主导的CDW。同时预测,在Sn位点掺杂Ge或Pb可以控制CDW的顺序,并提出ScV6Pb6作为166 kagome家族中的另一种CDW材料。

结果和讨论

图片

ScV6Sn6的高温原始相为六方晶格,空间群P6/mmm。原胞包含一个Sc原子(Wyckoff位置1a)、六个等效V原子(6i)和三对非等效Sn原子,分别标记为Sn1(2e)、Sn2(2d)和Sn3(2c)。

晶体结构由两层V和Sn1原子的kagome层、一层Sc和Sn3原子的三角形层和一层Sn2原子的蜂窝层组成。在两个kagome层中,Sn1原子相对于每个V kagome子晶格沿相反方向弯曲。Sn1和Sc原子沿c轴形成链。

q2 √3×√3×2晶格

图片

q3  √3×√3×3 晶格

图片

RV6Sn6系列中ScV6Sn6具有最小的R位离子半径导致Sc-Sn1键的缩短和Sn1-Sn1键沿链的伸长形成了Sn1-Sc-Sn1三聚体。这种独特的结构特征已被证明对CDW的形成至关重要。

两个CDW阶的畸变主要发生在Sn1-Sc链上,其中Sn1Sc-Sn1三聚体被移位,分别形成q3和q2阶沿c轴的×3和×2 CDW周期。

q3-CDW序包括三个呈现平稳上下模式的三聚体,而q2-CDW序中存在两个。

在两个CDW中,一个Sc1-Sn链中的三聚体相对于其他Sc1-Sn链路沿c轴交替位移,导致√3×√3平面内周期性。

ScV6Sn6原胞简谐和非简谐声子色散

图片

简谐声子色散中的虚频显示出多种动力学不稳定性,简谐不稳定性跨越布里渊区中很宽的区域,包括由A-L-H-A闭合路径表示的整个qz=1/2平面,还包括qz的其他值,例如qz=1/3平面上的K'点。计算得到的简谐色散的不稳定性包括实验报告的CDW不稳定性,波矢量q3和q2分别对应于布里渊区的K'和H点;而且还包括许多其他不稳定性。

有趣的是,当包括非谐声子-声子相互作用时,大多数谐波不稳定性消失,在有限温度下只在K‘和H点两个位置存在具有实验报道的虚频。

图片

原始ScV6Sn6在0 K、50 K、100 K和200 K温度下非谐声子色散表明,大多数声子分支显示出可忽略的温度依赖性,关键的例外是冷却后q2(H点)和q3(K’点)处的最低能量声子分支明显软化。

软模的平方频率ω2应与消失点附近的温度呈线性关系,使用线性拟合来提取与每个声子软化相关的转变温度T*。

图片

在高温(200 K)下,ScV6Sn6原胞两个q矢量处的声子频率都是真实的说明是动态稳定的。有趣的是,q3处的频率变为虚数的温度是84K,q2处的频率在更高温度140K下变为虚数。

这意味着,从高温原始相开始,随着温度的降低,第一个畸变是与q2相关的畸变,使XRD和IXS中观察到的q3-CDW转变温度以上的短程q2序合理化。

非谐声子结果与实验数据表现出显著的定量一致性。这与仅通过改变谐波声子计算中的涂抹值来调整电子温度而获得的温度标度(临界温度为2000 K和5500 K)的显著高估形成对比。

图片

比较q2和q3 CDW阶之间计算的亥姆霍兹自由能,观察到q2到q3 CDWs的交叉,交叉大约发生在Tc=43 K,低于q3 CDW不稳定性T*=84 K。q2-CDW序在高温下更稳定,自由能差随着温度的降低而减小。q3-CDW的预测转变温度Tc(≈43 K)低于实验值92 K和84 K,这种定量差异归因于Tc对系统体积的敏感性,更一般地归因于DFT计算的固有温度无关限制,例如因选择交换相关函数而产生的限制。在0 K下,与q2 CDW结构相比,q3 CDW结构更稳定,为1.80 meV/f.u。

本文的DFT计算正确地预测了q3-CDW是最低能量的基态,与实验一致。但所有早期的DFT研究都预测q2是基态。

在本文的计算中已经确定,在化合价中包含电子半芯态对于稳定q3-CDW顺序是必要的。

半芯态是指Sc原子的3s和3p轨道以及Sn原子的4d轨道。

图片

以往的DFT计算使用Sc原子3d1 4s2价电子和Sn原子5s2 5p2价电子的标准赝势,将半芯态排除在化合价之外,q2 CDW的总电子能比q3 CDW低0.52 meV/f.u。

图片

在自由能(Free energy,标记为F)中不考虑半芯态的情况下q2 CDW为基态,比q3 CDW稳定0.44 meV/f.u。自由能包括总电子能和声子能,声子贡献包括0 K时的简谐和非简谐零点能。

相比之下,包括Sc原子中的s和p半芯态以及Sn原子中的d半芯态作为价态的赝势预测q3-CDW为基态,而与声子贡献无关。考虑到声子的贡献,q3 CDW结构进一步稳定,将q2和q3 CDWs之间的能量差从0.47增加到1.80 meV/f.u。

图片

图片

包括半核态在内会使占据态的总带色散和DOS向上移动,导致两种CDW态在从原始结构形成时的总能量增益降低。具体而言,对于q2 CDW,CDW结构相对于原始结构的总能量增益从-3.43降低到-1.95 meV/f.u,对于q3 CDW,从-2.91降低到-2.42 meV/f.u。

q2 CDW总能量增益的减少归因于其电子结构的更显著变化,这些变化是由q2 CDW的较大结构变化引起的,特别是Sn1-Sc-Sn1链中的键长。

图片

q2 CDW中的键长变化高达0.065埃,而q3CDW中包含半核态时的最大变化为0.022埃。

这表明半核效应对q2 CDW的影响比对q3 CDW更明显。此外,与q3 CDW态不同,半核态会影响q2 CDW中费米能级附近的电子结构。原子投影DOS表明,负责CDW态的Sc和Sn1态受到特别大的影响,这表明Sn1-Sc-Sn1链中的校正改变了费米表面和相关性质。

通过将半核态作为化合价获得的VASP结果与WIEN2K结果显示出显著的一致性,表明在化合价中包含半核电子态对于获得正确预测ScV6Sn6基态CDW级的理论模型是必要的。

两个CDW之间的计算能量差很小(小于2meV/f.u.),突显了ScV6Sn6中两个CDWs的竞争性质。这表明,两个CDW订单之间的竞争可以很容易地通过外部扰动来操纵。

图片

从q2和q3 CDW阶数作为平面内和平面外晶格参数的函数的相图中可发现,平面外晶格参数是控制CDW阶数竞争的关键。

平面外晶格参数决定了相邻Sn1-Sc-Sn1三聚体畸变的可用空间,从而主导了竞争CDW之间的能量。

较小的平面外晶格参数限制了Sn1-Sc-Sn1三聚体扭曲的可用空间,有利于q3-CDW中三聚体的额外静止构型。相反,较大的平面外晶格参数有助于三聚体的集体畸变,并有利于q2 CDW。

图片

静水压抑制了两个CDW级,因为增加的压力会降低平面外晶格参数,从而减少Sn1-Sc-Sn1三聚体变形的空间。q3 CDW消失的临界压力(≈2.8 GPa)的理论值与2.4 GPa的实验值非常一致。

同样,平面内双轴拉伸应变导致平面外晶格参数减小,抑制了两个CDW序。

相比之下,平面内压缩应变增加了平面外晶格参数,增强了两个CDW阶的稳定性。有趣的是,q2 CDW阶在压缩应变下成为基态。临界压缩应变的预测值仅为1%左右,这应该可以通过实验获得。这些预测值得进一步的实验研究来证实。

为了研究掺杂的影响,我们用其他14族元素Ge和Pb完全替代Sn原子。

图片

ScV6Pb6的简谐声子色散在L和H点显示出虚模,表明CDW不稳定性。

图片

计算出的总能量证实ScV6Pb6具有CDW基态,L畸变略优于q2畸变。该化合物中不存在q3不稳定性。

相比之下,ScV6Ge6没有虚频,这与计算的总能量一致,表明CDW结构与原始结构相比是不稳定的。

图片

ScV6X6化合物(X=Ge、Sn和Pb)中X-Sc-X链中的键比d2/d1是CDW出现的重要指标,随着原子半径从Ge到Pb的增加,键比也会增加。较大的键比是这种kagome体系中CDW出现的必要条件之一,因为CDW的位移模式由X-Sc-X三聚体的振动组成。X-Sc和X-X原子之间较大的键差促进了这些振动,这对应于较大的键比。在ScV6Sn6的情况下,当Sc被Y或Gd等较大的原子取代时,键比降低到接近1,导致CDW消失。同样,在ScV6Ge6中,键比接近1,使三聚体化不利,导致CDW的缺失。

与Ge和Pb化合物的原始情况相比,q3-CDW顺序不太稳定,因此无法观察到。在Pb的情况下,我们的理论预测L和H(q2)CDW占主导地位,我们推测这是由于更大的平面外晶格参数。

结果表明,在Sn位点部分掺杂Pb或Ge可以抑制q3畸变,从而可能导致q2 CDW的主导地位。

收敛性测试

声子色散的收敛

由于具有波矢量q2和q3的两个竞争的CDW阶分别对应于布里渊区的H和K′点,因此直接在H和K’点计算动力学矩阵以获得可靠的结果至关重要。一般来说,计算出的声子频率在与所用网格相称的任何q点都是精确的。

计算H点(1/3,1/3,1/2)处的声子频率使用均匀的3×3×2 q点网格是精确的,而对于K′点(1/3,1/3,1/3)处的声子频率使用均匀的3×3×3网格是精确的。

可以使用大小为(3×3×2)∪(3×4×3)的非均匀Farey网格来获得相同的结果,该网格下的H和K′点的频率同时精确,但它在计算上比大小为3×3 x 6的均匀网格更有效。

图片

使用尺寸为(3×3×2)∪(3×3×3)的非均匀Farey网格获得的谐波声子色散与使用均匀3×3 x 6网格获得的声子色散相同。

应用(3×3×2)∪(3×2×3)Farey网格来获得非谐声子色散,因为使用均匀的3×3 x 6网格在非谐水平上同时计算H和K′在计算上是不可行的。

Farey网格在非谐计算中因为H和K′点的声子频率因使用的q点网格而异产生了更大的修正。

图片

当使用3×3×2 q点网格(蓝色实线)时,通过傅里叶插值获得的K′处的声子频率高于使用更精确的Farey网格(黑色虚线)计算的频率,导致即使在T=50 K时也没有q3-CDW阶。同样,对于3×3×3 q点网格(红色实线),H处的插值声子频率明显低于Farey网格的频率,即使在T=200K时也会产生虚频率。傅里叶插值的这些伪影只能通过明确地包括H和K′点来校正,就像Farey网格(黑色虚线)一样。

PBE与PBESOL泛函的比较

本文报告的是使用与常用的PBE交换相关泛函相比,它与实验测量的平面外晶格参数具有更好的一致性的PBEsol交换相关泛函计算得到的结果。但经过测试,本文结论与所使用的交换关联函数无关。

图片

PBEsol交换相关函数获得的结果与实验测量的平面外晶格参数更为一致,而这个参数对CDW的形成至关重要。PBEsol给出了平面外晶格参数c=9.12˚A,与PBE值c=9.25˚A相比,更接近实验值c=9.16˚A。

图片

BEsol和PBE计算的声子色散。整体声子色散看起来相似,包括虚频部分。PBEsol和PBE在H和K′点都表现出声子不稳定性,在H点观察到最低虚频率。

CASTEP交叉验证

使用castep对具有相同价态配置(包括半芯态)的两个CDW结构进行计算。

图片

vasp和castep的结果一致表明,q3 CDW序在q2 CDW上是稳定的。具体而言,使用vasp和castep,两个CDW结构之间的能量差分别为0.5meV/f.u.和1.1meV/f.u。

全电子WIEN2K比较

WIEN2K经常被用作高精度参考,以验证赝势是否准确地描述了一个系统。

使用半核态赝势的vasp结果与wien2k结果在以下方面的显著一致性:

(i)原始结构的总能量与晶格参数的函数,

(ii)与原始结构相比,CDW态的总能量增益,

(iii)原始和CDW结构的Sn1-Sc-Sn1链中的键长

(iv)电子结构。

图片

在wien2k计算中,分离核态和价态的截止能量被设置为-136eV,其中Sc原子的价电子被视为3s2 3p6 4s2 3d1,V为3s2 3p6 4s2 3d3,Sn为4s2 4p6 4d10 5s2 5p2。

图片

图片

使用半芯态的赝势获得的键长与wien2k的结果非常接近,与wien2k的结果相比,最大差异为0.024˚a。没有半芯态的情况下获得的键长差异为0.063˚a。

图片

图片

晶格参数优化与是否包含半芯态的关系

图片

晶格参数空间中两个CDW阶的相图。不包括半芯态的赝势无法预测所探索的任何晶格参数的q3-CDW顺序。

电子温度效应

计算了0.02 eV至0.5 eV的涂抹值范围大约对应于300 K至5800 K的电子温度对简谐声子色散的影响。声子色散随着电子温度的升高而变化,特别是在虚频声学支中。

图片

q2和q3 CDW的估计转变温度分别为5500 K和2000 K。0.1 eV是1160.6 K。

与以往计算结果对比

图片

以往的DFT计算使用PBE泛函,得到了一个优化的平面外晶格参数c=9.25埃,明显大于实验的平面外点阵参数c=9.16埃。

在PBE优化的晶格参数下,确实计算出q2 CDW比q3 CDW更稳定。

使用实验的晶格参数表明q3 CDW是基态。

这些结果证实了平面外晶格参数在决定两个CDW阶的相对稳定性中起着重要作用。这些结果还解释了为什么之前的DFT计算即使其中一些计算考虑了价态中包含半芯态未能预测q3-CDW基态。

方法

电子结构计算

VASP

赝势:具有价态配置的PAW赝势:Sc原子为3s2 3p6 3d1 4s2(3d1 4s2),V原子为3s2 3p6 4s2 3d3(4s2 3d3),Sn原子为5s2 4d10 5p2(5s2 5p2),用于有(无)半芯态的情况。

GGA,PBEsol,ECUT 500eV,Methfessel-Paxton 涂抹0.02eV。15×15×8的Γ中心k点,收敛:0.005 eV/Å,

CASTEP

赝势:NCP19。ECUT 1000eV,高斯涂抹0.02eV。Monkhorst Pack k点步移。收敛:0.005 eV/Å。

WIEN2K

全势线性增强平面波(FP-LAPW),PBEsol。

收敛:1×10-6Ry、1×10-14e,0.5mRy/Bohr。

对于Sc、V和Sn原子,球体的半径(R)分别为2.40、2.26和2.38玻尔。

RMT×Kmax 8.5

截止能量-136eV,价电子:Sc 3s2 3p6 4s2 3d1,V 3s2 3p6 4s2 3d3,Sn 4s2 4p6 4d10 5s2 5p2。

简谐声子计算

有限位移法结合非对角超晶胞进行谐波声子计算。(3×3×2)∪(3×3×3)的Farey非均匀q网格,该网格与q2和q3都相当。3×3×6均匀q获得力常数。

非简谐声子计算

非谐声子计算使用非微扰方法随机自洽谐波近似(SSCHA)进行,考虑了零度和有限温度下的非谐效应。

使用VASP计算随机抽样非谐系统集合的总能量、力和应力。

相关的电子结构计算是使用300eV的动能截止值进行的,我们考虑了与3×3×2超电池和3×3 x 3超电池相称的配置。收敛自由能Hessian1000。

(3×3×2)∪(3×三×3)的Farey非均匀q网格用于在q2和q3处获得相称的声子结果。

为了更好地预测CDW转变温度,将晶格参数固定为实验值。

使用与电子结构计算相同的参数进行自由能计算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值