【HDU 1231】最大连续子序列(DP)

Problem Description

给定K个整数的序列{ N1, N2, …, NK },其任意连续子序列可表示为{ Ni, Ni+1, …,
Nj },其中 1 <= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个,
例如给定序列{ -2, 11, -4, 13, -5, -2 },其最大连续子序列为{ 11, -4, 13 },最大和
为20。
在今年的数据结构考卷中,要求编写程序得到最大和,现在增加一个要求,即还需要输出该
子序列的第一个和最后一个元素。

Input

测试输入包含若干测试用例,每个测试用例占2行,第1行给出正整数K( < 10000 ),第2行给出K个整数,中间用空格分隔。当K为0时,输入结束,该用例不被处理。

Output

对每个测试用例,在1行里输出最大和、最大连续子序列的第一个和最后一个元
素,中间用空格分隔。如果最大连续子序列不唯一,则输出序号i和j最小的那个(如输入样例的第2、3组)。若所有K个元素都是负数,则定义其最大和为0,输出整个序列的首尾元素。

Sample Input

6
-2 11 -4 13 -5 -2
10
-10 1 2 3 4 -5 -23 3 7 -21
6
5 -8 3 2 5 0
1
10
3
-1 -5 -2
3
-1 0 -2
0

Sample Output

20 11 13
10 1 4
10 3 5
10 10 10
0 -1 -2
0 0 0

Hint

Hint

Huge input, scanf is recommended.

题目大意

中文题

思路

求最大连续子序列同时需要给出该序列的开头和结尾元素.转态转移方程:

dp[i]=max(dp[i],dp[i-1]+num[i]);

两种决策:
①将当前元素归并到当前序列中。
②当前元素成为新的序列,因为当前元素的值大于当前序列的最大值,要保证最优策略,所以应该舍弃当前序列,将当前元素做为新的序列。

代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>


using namespace std;
const int maxn=10000+5;

int dp[maxn],num[maxn],k,sum;

int main()
{
    while(~scanf("%d",&k)&&k)
    {
        sum=0;
        int fir,end,ansf,anse,maxx;
        for(int i=0;i<k;i++)
        {
            scanf("%d",&num[i]);
        }
        sum=maxx=fir=end=ansf=anse=num[0];
        for(int i=1;i<k;i++)
        {
            if(sum>0)
            {
                sum+=num[i];
                end=num[i];
            }
            if(sum<=0)
            {
                sum=num[i];
                fir=num[i];
                end=num[i];
            }
            if(sum>maxx)
            {
                maxx=sum;
                ansf=fir;
                anse=end;
            }
        }
        if(maxx>=0) printf("%d %d %d\n",maxx,ansf,anse);
        else printf("0 %d %d\n",num[0],num[k-1]);
    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值