Android安卓麻将识别源码开发教程( 四 移植到安卓平台总结 )

本文详述了从样本采集、预处理、标注到模型训练的全过程,特别是在安卓平台上实现麻将识别的效果与不足。作者指出,清晰度、样本全面性及实际应用场景的模拟对于识别效果至关重要,并分享了训练的心得体会。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一章讲训练的过程,最终得出训练模型,导入Android 上面,运行Demo效果还不错,咱们先说训练效果好的方面,再说不好的方面。

看完视频效果是不是觉得很牛逼,识别效果居然这么完美啊 ,哈哈!

先说一下本次训练过程: 

1:样本采集,拍摄28个视频 

2:样本预处理转化成图片并分组,主要工作内容就是写脚本

3:标注,标注是一个辛苦的活,一共标注2800张左右的图片 

4:打包上传准备脚本之类 。

5:训练过程中测试过程中模型在手机上的效果花 。

6:训练过程中写博客 

7:训练在云端 。  

心得体会:

1:关于样本,采集方式要全面一些,我采集都是一张麻将,周围都是绿色背景,但实际打麻将,麻将肯定大多数时候是挨着的。

所以没考虑这总情况。

2:关于样本,我是拍摄视频1280x720的,这样样本都是这个尺寸,而训练的网络inp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Softboy_TM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值