Nvidia Grid K2 虚拟化vGPU部署实践,一次奇妙的翻车之旅

文章讲述了作者在家中的DellR730XD服务器上部署ESXi6.7虚拟化环境时,选择NvidiaGridK2GPU加速卡的经历,包括选卡原因、安装过程、遇到的问题(如电源线错误、系统崩溃)以及最终发现的显存不一致问题。
摘要由CSDN通过智能技术生成

事情起因

家里有一台Dell R730XD服务器(垃圾佬最爱),部署的Vmware ESXi 6.7虚拟化环境,计划安装一张GPU加速卡,提供vgpu给虚拟机,为媒体服务器,及两台升腾C92瘦终端的虚拟桌面提供视频解码能力

设备选择

经多方比较,结合自身需求,选择了当年的最强王者(过时的古董)Nvidia Grid K2加速卡,此卡无需vGPU授权,性价比高(便宜),具备两颗2013年强劲的GK104核心GPU,8G显存,支持2-16个vGPU,完全满足我的需求(qiong)
图片来自英伟达官网

人生若只如初见

在海鲜市场150块钱迎娶回家

迫不及待的上机测试,奈何卖家把电源线发错了,此卡需要独立供电,
在这里插入图片描述

又网购了一根8P转8+8P电源线,实际使用是8P转8P+6P,经过三天的热切期待,终于到货,可以上机测试了

云雨初试

先分配一个K240Q vGPU给虚拟机,看能否识别,在线视频播放正常,真不错
后测试 4K H264解码也没有问题一百多块钱太值了在这里插入图片描述在这里插入图片描述

然而好景不长

当我分配vGPU给更多虚拟机时,她开始给我甩脸子了,ESXi直接崩了,一点情面也没给
在这里插入图片描述

我到底哪里错了?

于是我苦苦思索了三天
尝试直接直通GPU给虚拟机,问题依然时不时的发生
尝试切换vGPU的型号,从K200到K280Q,依然是日常性崩溃
尝试重新安装虚拟化前端驱动安装包和后端驱动VIB文件安装包
尝试修改虚拟机vmx文件
尝试修改BIOS的UEFI以及SR-IOV模式设置,都没有解决我们的问题

真相逐渐揭晓

当我重新安装host后端VIB驱动的时候,偶然发现了一丝异常
在这里插入图片描述
在这里插入图片描述

两个GPU显存数量不一致,而且第二个GPU不支持ECC,难道是厂家的一种特殊设计?
为此我又上网查询了其他人的显存信息是如何打印的,果不其然,其他人的两个GPU显存信息是一致的
图片来自知乎

验证一下我的想法

如果第二个GPU有问题,那么意味着我只要都从第一个GPU分配vGPU给虚拟机,那就不会有问题,测试了一下确实如此
在这里插入图片描述

写在最后

虽然它有它的问题,也是怪我太过于心急了,就这样吧,和它相处我也得到了许多,习惯性给卖家一个好评吧

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### 回答1: NVIDIA GRID vGPU for vSphere 是一项技术,它允许在VMware vSphere虚拟机环境中有效地使用NVIDIA GPU资源。vGPU代表虚拟GPU,它允许将物理GPU资源虚拟化为多个虚拟GPU,以支持多个虚拟机同时使用GPU虚拟化GPU的主要好处是提供更高的资源利用率和更好的用户体验。使用NVIDIA GRID vGPU技术,多个虚拟机可以同时访问物理GPU资源,而不会互相干扰。这使得虚拟机能够实现高性能计算和图形渲染任务,包括视频处理、3D模型渲染、游戏和数据处理等。 通过NVIDIA GRID vGPU for vSphere,虚拟桌面基础设施(VDI)可以获得更高的图形性能和更好的用户响应时间。企业可以通过虚拟化的方式部署桌面应用程序,员工可以从任何地方使用个人设备来访问这些应用程序,而不需要在本地安装相关软件。这样可以提高员工的工作灵活性和生产效率。 此外,由于虚拟机可以共享物理GPU资源,可以节省硬件成本和能源消耗。一个物理GPU可以同时服务多个虚拟机,而不需要每个虚拟机都有自己的独立GPU。这样可以减少GPU的购买和维护成本,提供更高的资源利用率。 总而言之,NVIDIA GRID vGPU for vSphere是一项在VMware vSphere虚拟机环境中使用NVIDIA GPU资源的技术。它提供了更高的资源利用率、更好的用户体验和更灵活的工作方式,同时减少了硬件成本和能源消耗。这对于需要在虚拟化环境中进行图形计算和渲染的企业和个人用户来说是一个很有价值的解决方案。 ### 回答2: NVIDIA GRID vGPU for vSphere 是一种虚拟化技术,可以将 NVIDIAGPU 资源与 VMware vSphere 平台结合,提供虚拟化环境中的图形处理能力。它能够将一台物理 GPU 分享给多个虚拟机,并在虚拟机中同时运行具有高性能图形需求的应用程序。 NVIDIA GRID vGPU for vSphere 的主要优势是提供了良好的图形性能和用户体验。它使用了 GPU 原生显存虚拟化技术,实现了虚拟机直接访问物理 GPU 的能力,从而在虚拟机中实现了近似原生 GPU 性能。这对于那些需要高性能图形处理的工作负载非常重要,比如设计、渲染、科学计算等领域。 此外,NVIDIA GRID vGPU for vSphere 还提供了灵活的资源划分和调度机制。它可以将物理 GPU 分割成多个虚拟 GPU,每个虚拟 GPU 可以分配给不同的虚拟机。管理员可以根据实际需求和工作负载进行灵活配置,以实现最佳的性能和资源利用率。 同时,NVIDIA GRID vGPU for vSphere 还提供了动态 GPU 分配和按需扩展的特性。它可以根据实际负载情况自动调整虚拟机的 GPU 分配和资源使用,以实现更高效的资源管理和能源利用。 总之,NVIDIA GRID vGPU for vSphere 是一种在 VMware vSphere 虚拟化平台上实现高性能图形处理的解决方案。它提供了近原生级的图形性能和用户体验,同时具备灵活的资源划分和调度机制,可满足多种工作负载的需求,并提供了动态 GPU 分配和按需扩展的特性,以实现更高效的资源管理和能源利用。 ### 回答3: NVIDIA Grid vGPU是一项由NVIDIA提供的虚拟图形处理单元(vGPU)技术,它与VMware vSphere虚拟化平台结合使用。这项技术为虚拟化环境提供了强大的图形处理能力,可以支持多用户同时共享物理GPU资源。 在传统的虚拟化环境中,由于GPU资源无法被多个用户共享,导致图形应用程序在虚拟机中的性能受限。而NVIDIA Grid vGPU技术通过将物理GPU划分为多个虚拟GPU,每个虚拟GPU可以分配给不同的虚拟机实例使用,从而实现了多用户共享GPU资源的功能。 借助NVIDIA Grid vGPU技术,企业可以在VMware vSphere平台上实现高性能的虚拟化图形工作负载。例如,在设计、媒体制作、科学计算等领域,用户可以在虚拟桌面环境中运行要求较高的图形应用程序,而无需购买昂贵的独立工作站。 此外,NVIDIA Grid vGPU技术还支持动态资源分配和虚拟机迁移等功能,可以根据实际需求动态调整虚拟机的GPU资源,并且在不同服务器之间进行无缝迁移。这样,用户可以根据自己的工作负载需求,自由地管理和分配GPU资源,提高资源利用率和灵活性。 综上所述,NVIDIA Grid vGPU与VMware vSphere的结合为虚拟化环境提供了强大的图形处理能力,实现了多用户共享GPU资源的功能,为企业提供了高性能的虚拟化图形工作负载解决方案。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值