简单整理下二叉堆的基本原理,常见应用及一道经典合并k个链表题:
二叉堆原理:
- 是一棵满足堆性质的完全二叉树,即能够动态排序的数据结构;
(能够动态排序的数据结构:1. 二叉堆;2. 二叉搜索树) - 什么是堆性质:最大堆的每个父节点 >= 子节点,最小堆的每个父节点 <= 子节点;
- 用数组存储结构实现堆,依靠上浮(swim),下沉(sink)操作维持堆结构;
二叉堆的应用:
- 数据结构-优先级队列;
- 排序方法-堆排序;
23. 合并K个升序链表
题目重点:输入:一个包含 k 个链表头节点的列表 lists(已按升序排列),目标:将这个 lists 合并成一个新的升序链表,并返回头节点。
思路:使用最小堆(优先队列)优化,即堆中每个元素是当前各链表的头节点,每次弹出堆顶的最小值,加入结果链表,并把该节点的 next 放入堆中。
核心代码:
class Solution:
def mergeKLists(self, lists: List[Optional[ListNode]]) -> Optional[ListNode]:
# 初始化一个最小堆,可以使用它快速找到当前所有链表头中值最小的那个节点
min_heap = []
for i, node in enumerate(lists):
if node:
# 把元素放入堆中
heappush(min_heap, (node.val, i, node))
dummy = ListNode(-1)
cur = dummy
# 只要堆不空,就循环处理,说明还有节点没处理完。
while min_heap:
# 弹出堆中当前值最小的节点
val, i, node = heappop(min_heap)
cur.next = node
cur = cur.next
if node.next:
heappush(min_heap, (node.next.val, i, node.next))
return dummy.next