小G的算法刷题日记 - 二叉堆/优先级队列

简单整理下二叉堆的基本原理,常见应用及一道经典合并k个链表题:

二叉堆原理:

  1. 是一棵满足堆性质的完全二叉树,即能够动态排序的数据结构;
    (能够动态排序的数据结构:1. 二叉堆;2. 二叉搜索树)
  2. 什么是堆性质:最大堆的每个父节点 >= 子节点,最小堆的每个父节点 <= 子节点;
  3. 用数组存储结构实现堆,依靠上浮(swim),下沉(sink)操作维持堆结构;

二叉堆的应用:

  1. 数据结构-优先级队列;
  2. 排序方法-堆排序;

23. 合并K个升序链表

题目重点:输入:一个包含 k 个链表头节点的列表 lists(已按升序排列),目标:将这个 lists 合并成一个新的升序链表,并返回头节点。

思路:使用最小堆(优先队列)优化,即堆中每个元素是当前各链表的头节点,每次弹出堆顶的最小值,加入结果链表,并把该节点的 next 放入堆中。

核心代码:

class Solution:
    def mergeKLists(self, lists: List[Optional[ListNode]]) -> Optional[ListNode]:
        # 初始化一个最小堆,可以使用它快速找到当前所有链表头中值最小的那个节点
        min_heap = []
        
        for i, node in enumerate(lists):
            if node:
                # 把元素放入堆中
                heappush(min_heap, (node.val, i, node))

        dummy = ListNode(-1)
        cur = dummy
        
        # 只要堆不空,就循环处理,说明还有节点没处理完。
        while min_heap:
            # 弹出堆中当前值最小的节点
            val, i, node = heappop(min_heap)
            cur.next = node
            cur = cur.next
            if node.next:
                heappush(min_heap, (node.next.val, i, node.next))
        return dummy.next

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值