HADOOP浅析

Hadoop Distributed File System (HDFS) 是Apache Hadoop项目的核心组件,旨在提供高吞吐量的数据访问,适合大规模数据存储。设计目标包括跨多节点存储和处理大数据,保证高可靠性,支持扩展性。HDFS采用一次写入、多次读取的模型,通过NameNode管理文件元数据,DataNode负责数据存储,文件被划分为Block进行存储,副本分布在不同节点以实现容错。NameNode通过SecondaryNameNode协助管理元数据,定期合并fsimage和edits。HDFS的文件写入和读取过程涉及客户端、NameNode和DataNode之间的交互,确保高效和可靠的数据传输。
摘要由CSDN通过智能技术生成

Hadoop  核心介绍

1. HDFS

HDFS(Hadoop Distributed File System) 是一个 Apache Software Foundation 项目, 是 Apache Hadoop 项目的一个子项目. Hadoop 非常适于存储大型数据 (比如 TB 和 PB), 其就是使用 HDFS 作为存储系统. HDFS 使用多台计算机存储文件, 并且提供统一的访问接口, 像是访问一个普通文件系统一样使用分布式文件系统. HDFS 对数据文件的访问通过流的方式进行处理, 这意味着通过命令和 MapReduce 程序的方式可以直接使用 HDFS. HDFS 是容错的, 且提供对大数据集的高吞吐量访问.

HDFS 的一个非常重要的特点就是一次写入、多次读取, 该模型降低了对并发控制的要求, 简化了数据聚合性, 支持高吞吐量访问. 而吞吐量是大数据系统的一个非常重要的指标, 吞吐量高意味着能处理的数据量就大.

1.1. 设计目标

  • 通过跨多个廉价计算机集群分布数据和处理来节约成本
  • 通过自动维护多个数据副本和在故障发生时来实现可靠性
  • 它们为存储和处理超大规模数据提供所需的扩展能力。

1.2. HDFS 的历史

  1. Doug Cutting 在做 Lucene 的时候, 需要编写一个爬虫服务, 这个爬虫写的并不顺利, 遇到了一些问题, 诸如: 如何存储大规模的数据, 如何保证集群的可伸缩性, 如何动态容错等
  2. 2013年的时候, Google 发布了三篇论文, 被称作为三驾马车, 其中有一篇叫做 GFS, 是描述了 Google 内部的一个叫做 GFS 的分布式大规模文件系统, 具有强大的可伸缩性和容错性
  3. Doug Cutting 后来根据 GFS 的论文, 创造了一个新的文件系统, 叫做 HDFS

1.3. HDFS 的架构

 

  1. NameNode 是一个中心服务器, 单一节点(简化系统的设计和实现), 负责管理文件系统的名字空间(NameSpace)以及客户端对文件的访问
  2. 文件操作, NameNode 是负责文件元数据的操作, DataNode 负责处理文件内容的读写请求, 跟文件内容相关的数据流不经过 NameNode, 只询问它跟哪个 DataNode联系, 否则 NameNode 会成为系统的瓶颈
  3. 副本存放在哪些 DataNode 上由 NameNode 来控制, 根据全局情况作出块放置决定, 读取文件时 NameNode 尽量让用户先读取最近的副本, 降低读取网络开销和读取延时
  4. NameNode 全权管理数据库的复制, 它周期性的从集群中的每个 DataNode 接收心跳信合和状态报告, 接收到心跳信号意味着 DataNode 节点工作正常, 块状态报告包含了一个该 DataNode 上所有的数据列表
NameNode DataNode
存储元数据 存储文件内容
元数据保存在内存中 文件内容保存在磁盘
保存文件, block, DataNode 之间的关系 维护了 block id 到 DataNode 文件之间的关系

1.4. HDFS 文件副本和 Block 块存储

所有的文件都是以 block 块的方式存放在 HDFS 文件系统当中, 在 Hadoop1 当中, 文件的 block 块默认大小是 64M, hadoop2 当中, 文件的 block 块大小默认是 128M, block 块的大小可以通过 hdfs-site.xml 当中的配置文件进行指定

<property>
    <name>dfs.block.size</name>
    <value>块大小 以字节为单位</value>
</property>

1.4.1. 引入块机制的好处

  1. 一个文件有可能大于集群中任意一个磁盘
  2. 使用块抽象而不是文件可以简化存储子系统
  3. 块非常适合用于数据备份进而提供数据容错能力和可用性

1.4.2. 块缓存

通常 DataNode 从磁盘中读取块, 但对于访问频繁的文件, 其对应的块可能被显式的缓存在 DataNode 的内存中, 以堆外块缓存的形式存在. 默认情况下,一个块仅缓存在一个 DataNode 的内存中,当然可以针对每个文件配置 DataNode 的数量. 作业调度器通过在缓存块的 DataNode 上运行任务, 可以利用块缓存的优势提高读操作的性能.

例如:

连接(join) 操作中使用的一个小的查询表就是块缓存的一个很好的候选

用户或应用通过在缓存池中增加一个 Cache Directive 来告诉 NameNode 需要缓存哪些文件及存多久. 缓存池(Cache Pool) 是一个拥有管理缓存权限和资源使用的管理性分组.

例如一个文件 130M, 会被切分成 2 个 block 块, 保存在两个 block 块里面, 实际占用磁盘 130M 空间, 而不是占用256M的磁盘空间

1.4.3. HDFS 文件权限验证

HDFS 的文件权限机制与 Linux 系统的文件权限机制类似

r:read  w:write  x:execute

权限 x 对于文件表示忽略, 对于文件夹表示是否有权限访问其内容 如果 Linux 系统用户 zhangsan 使用 Hadoop 命令创建一个文件, 那么这个文件在 HDFS 当中的 Owner 就是 zhangsan HDFS 文件权限的目的, 防止好人做错事, 而不是阻止坏人做坏事. HDFS相信你告诉我你是谁, 你就是谁

1.5. HDFS 的元信息和 SecondaryNameNode

当 Hadoop 的集群当中, 只有一个 NameNode 的时候, 所有的元数据信息都保存在了 FsImage 与 Eidts 文件当中, 这两个文件就记录了所有的数据的元数据信息, 元数据信息的保存目录配置在了 hdfs-site.xml 当中

 

<property>
  <name>dfs.namenode.name.dir</name>
  <value>file:///op
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值