一道关于应试导数求参数的讨论:已知$\forall x>0,\mathrm e^{(kx-1)/(x+1)}<x+1$中,求整数$k$的最大值

前言:导数,应试

题.已知 x>0,e(kx1)/(x+1)<x+1 中,则整数 k 的最大值为是_.

解1:先作“尝试”,如果直接构造f(x)=x+1e(kx1)/(x+1),求导后

f(x)=(x+1)2(k+1)e(kx1)/(x+1)(x+1)2.
比原函数还复杂,因此,需改造题目.首选两边取自然对数
x>0,e(kx1)/(x+1)<x+1kx1x+1<ln(x+1),x>0.

f(x)=ln(x+1)kx1x+1,x>0.
于是,原问题转化为求 f(x)min>0 即可.

求导得

f(x)=xk(x+1)2.

k0 时, f(x)>0 ,从而 f(x) (0,+) 单调递增,所以

f(x)minf(0)=1>0.
此时整数 k 的最大值为0

k>0 时,令 f(x)=0x=k ,得到 x,f(x),f(x) 的关系如下表

xf(x)f(x)(0,k)k0(k,+)+

于是
f(x)min=f(k)=ln(k+1)k21k+1=ln(k+1)k+1.
这样原问题又“变化”为 f(k) 与0的大小关系,即需求 ln(k+1)k+1>0 的解集.

g(x)=ln(x+1)x+1,x>0 ,求导得 g(x)=xx+1<0, g(x) (0,+) 单调递减,又

g(2)=ln31>0,g(3)=ln42<0.
从而存在惟一的 k0 使得 g(k0)=0,
k0(2,3),g(k0)=ln(k0+1)k0+1=0.

亦是

k(0,k0),f(x)min=f(k)>f(k0)=0.

综上, k 的最大整数值为2.

===========

解2:在解1中,我得得到了

x>0,e(kx1)/(x+1)<x+1kx1x+1<ln(x+1),x>0.
也可以尝试分离参变量.

进一步,有

k<(x+1)ln(x+1)+1x,x>0.
F(x)=(x+1)ln(x+1)+1x,x>0.
于是原问题等价于求 F(x) 的最小值,求导得
F(x)=x1ln(x+1)x2=(ln(x+1)x+1)x2,x>0.

由解1中,知 g(x)=ln(x+1)x+1,x>0 在单调递减,且

x0(2,3),g(x0)=ln(x0+1)x0+1=0ln(x0+1)=x01.

F(x)=x1ln(x+1)x2=0x=x0 ,从而得到 x,F(x),F(x) 的关系如下表

xF(x)F(x)(0,x0)x00(x0,+)+

于是
F(x)min=F(x0)=(x0+1)ln(x0+1)+1x0=(x0+1)(x01)+1x0=x0(2,3).
所以, k <script type="math/tex" id="MathJax-Element-44">k</script>的最大整数值为2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值