前言:导数,应试
题.已知 ∀x>0,e(kx−1)/(x+1)<x+1 中,则整数 k 的最大值为是_.
解1:先作“尝试”,如果直接构造
f′(x)=(x+1)2−(k+1)e(kx−1)/(x+1)(x+1)2.
比原函数还复杂,因此,需改造题目.首选两边取自然对数
∀x>0,e(kx−1)/(x+1)<x+1⟺kx−1x+1<ln(x+1),x>0.
令
f(x)=ln(x+1)−kx−1x+1,x>0.
于是,原问题转化为求
f(x)min>0
即可.
求导得
f′(x)=x−k(x+1)2.
当 k⩽0 时, f′(x)>0 ,从而 f(x) 在 (0,+∞) 单调递增,所以
f(x)min⩾f(0)=1>0.
此时整数
k
的最大值为当
k>0
时,令
f′(x)=0⇒x=k
,得到
x,f′(x),f(x)
的关系如下表
xf′(x)f(x)(0,k)−↘k0(k,+∞)+↗
于是
f(x)min=f(k)=ln(k+1)−k2−1k+1=ln(k+1)−k+1.
这样原问题又“变化”为
f(k)
与0的大小关系,即需求
ln(k+1)−k+1>0
的解集.
记 g(x)=ln(x+1)−x+1,x>0 ,求导得 g′(x)=−xx+1<0, 即 g(x) 在 (0,+∞) 单调递减,又
g(2)=ln3−1>0,g(3)=ln4−2<0.
从而存在惟一的
k0
使得
g(k0)=0,
即
∃k0∈(2,3),g(k0)=ln(k0+1)−k0+1=0.
亦是
∀k∈(0,k0),f(x)min=f(k)>f(k0)=0.
综上, k 的最大整数值为2.
===========
解2:在解1中,我得得到了
进一步,有
k<(x+1)ln(x+1)+1x,x>0.
记
F(x)=(x+1)ln(x+1)+1x,x>0.
于是原问题等价于求
F(x)
的最小值,求导得
F′(x)=x−1−ln(x+1)x2=−(ln(x+1)−x+1)x2,x>0.
由解1中,知 g(x)=ln(x+1)−x+1,x>0 在单调递减,且
∃x0∈(2,3),g(x0)=ln(x0+1)−x0+1=0⇒ln(x0+1)=x0−1.
令
F′(x)=x−1−ln(x+1)x2=0⇒x=x0
,从而得到
x,F′(x),F(x)
的关系如下表
xF′(x)F(x)(0,x0)−↘x00(x0,+∞)+↗
于是
F(x)min=F(x0)=(x0+1)ln(x0+1)+1x0=(x0+1)(x0−1)+1x0=x0∈(2,3).
所以,
k
<script type="math/tex" id="MathJax-Element-44">k</script>的最大整数值为2.