Palindrome Partitioning

Given a string s, partition s such that every substring of the partition is a palindrome.

Return all possible palindrome partitioning of s.

For example, given s = "aab",
Return

  [
    ["aa","b"],
    ["a","a","b"]
  ]


1. 为了获得所有的palindrome pair信息,先做一个DP(n^2)得到一个2维的isPalin
2. 下一步根据isPalin做一个DFS来构建所有partition。 (或者按照解法1用ppos来构建,则需要在计算isPalin的时候得到ppos -- 表示当前点之前的一个list,其中包含所有能和当前点构成一个palindrome的index - 1 (就是前一个需要考虑能否得到palindrome配对的点))

解法2 在每次递归都要考虑从当前index到最有一个字符,解法1则只考虑有效的palindrome对(在构建ispalin时候得到的),如果s里边palindrome的对很少,而s本身非常长的话,解法1优势就比较明显。


-------------------
class Solution {
public:
    vector<vector<string>> partition(string s) {
        vector<vector<string>> ret;
        int len = s.length();
        if (len == 0) return ret;
        vector<vector<bool>> isPalin(len, vector<bool>(len, false));
        isPalin[0][0] = true;
        for (int i = 1; i  < len; i++) {
            isPalin[i][i] = isPalin[i][i - 1] = true;
        }
        
        vector<vector<int>> ppos(len, vector<int>());
        for (int i = 0; i < len; i++) {
            ppos[i].push_back(i - 1);
            for (int j = i - 1; j >= 0; j--) {
                if (s[j] == s[i] && isPalin[j + 1][i - 1]) {
                    isPalin[j][i] = true;
                    ppos[i].push_back(j - 1);
                }
            }
        }
        
        // 1
        vector<string> curv;
        //buildPalin(ret, curv, s, ppos, len - 1);
        
        // 2, don't need ppos 
        buildPalin(ret, curv, s, isPalin, 0);
        
        return ret;
    }
    
private:
    void buildPalin(vector<vector<string>> &ret, vector<string> &curv, string &s, vector<vector<int>> &ppos, int cpos) {
        if (cpos < 0) {
            ret.push_back(vector<string>(curv.rbegin(), curv.rend()));
            return;
        }
        
        for (int i = 0; i < ppos[cpos].size(); i++) {
            curv.push_back(s.substr(ppos[cpos][i] + 1, cpos - ppos[cpos][i]));
            buildPalin(ret, curv, s, ppos, ppos[cpos][i]);
            curv.pop_back();
        }
    }
    
    void buildPalin(vector<vector<string>> &ret, vector<string> &curv, string &s, vector<vector<bool>> &isPalin, int cpos) {
        if (cpos == s.length()) {
            ret.push_back(curv);
            return;
        }
        
        for (int i = cpos; i < s.length(); i++) {
            if (isPalin[cpos][i]) {
                curv.push_back(s.substr(cpos, i - cpos + 1));
                buildPalin(ret, curv, s, isPalin, i + 1);
                curv.pop_back();
            }
        }
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值