- 博客(72)
- 收藏
- 关注
原创 Yolov8+动态蛇形卷积,助你大幅涨点!
动态蛇形卷积(DSCONV)是一种深度学习中的卷积神经网络(CNN)技术,它旨在处理卷积操作中的某些限制,以提高网络处理不规则数据的能力。适用场景:血管、道路等复杂网状管状结构。
2024-02-03 23:23:48 1392 3
原创 Yolov8大幅涨点!Yolov8+GEM注意力机制
相较原版YOLOv8s模型,我们添加了全局注意力机制,即可以通过保留空间和通道信息之间的关联来提高模型的性能。将输入特征映射通过通道注意力子模块和空间注意力子模块形成GAM的输出特征。
2024-01-18 23:00:04 2082 10
原创 目标检测实战教程Day1(原创)
本节将从目标检测的重要性与应用出发,详尽地介绍目标检测的核心原理与方法,目的是帮助读者了解目标检测的工作机制和实现技术。通过本节的学习,读者将能够掌握目标检测的基本分类与关键概念,为后续模型的实际部署做准备。
2024-10-08 20:52:56 1067
原创 大学物理实验-杨氏双缝干涉实验
实验过程中,我们注意到干涉条纹的位置、间距与波长之间的关系,以及光源与接收CCD的调节对观察效果的影响。干涉条纹的颜色和清晰度:由于白炽灯包含多种波长的光,所产生的干涉条纹将是彩色的,每种颜色对应不同波长的光。(3)将多功能片放入扩散镜和CCD之间,靠近靠近扩束镜,多功能片选三组双缝中的中间(a=0.06,d=0.25)缝,调节多功能片为主,适当配合调节扩束镜等,使CCD上能看到清晰条纹。操作不当:实验操作的不精确,如光路调整不够细致,或者对实验步骤的理解不正确,可能导致无法观察到正确的干涉图样。
2024-09-09 18:31:22 2090
原创 图书借阅计划生成系统设计与实现(C语言版—数据结构和算法课程设计)
一、题目要求图书馆拥有大量的图书资源,学生可能依据图书的信息和在管情况设计自己的学期阅读计划。本项目要求如下:录入并查询图书信息:提前存储或以手工录入的方式编程记录下列图书信息,要求使用顺序表存储序号,单条图书的序号、名称、所属分类、当前借阅情况用单链表构建。序号书籍名称所属分类当前借阅情况阅读耗时1《大学物理》教科书在馆30天11《史记》历史在馆15天12《资治通鉴》历史在借27天21《资本论》经济在馆25天31
2024-09-05 15:57:03 1412
原创 从零开始学习深度学习库-6:集成新的自动微分模块和MNIST数字分类器
这个文件将作为您需要的所有神经网络组件的中心存储库,包括不同类型的层、激活函数以及构建和操作神经网络所需的潜在其他实用程序。如果您还记得,get_gradients 方法是 Tensor 类的一部分,它计算涉及这个张量计算的所有变量的导数。现在导数已经计算完毕,优化器将遍历网络的每一层,并通过调用层的更新方法来更新其参数,将自身作为参数传递给它。这意味着网络中的所有权重和偏置现在都已计算出其导数,这些导数都存储在它们的梯度属性中。这个方法接收一个优化器的实例,并根据优化器计算出的delta值更新层的参数。
2024-08-23 16:02:28 506
原创 基于Python的帕金森病人步态分析
本研究通过采用傅里叶变换方法,利用Python编程环境对帕金森病患者的步态数据进行详细分析,以探讨疾病对患者步态的影响。研究目的在于通过收集和分析步态参数(如步长、步速及步态不对称性)开发一套辅助诊断帕金森病、监测病情进展,并评估治疗效果的方法。实验在Google Colab平台进行,涵盖信号生成、手动与自动傅里叶变换及步态信息的时域和频域分析。研究结果表明,帕金森病患者与健康对照组在步态特征上存在显著差异,特别是在频域分析中明显体现。
2024-07-23 17:32:55 763
原创 GPU租赁教程/云主机使用教程/在线GPU环境部署/免费GPU/免费算力||运用云服务器,跑自己的深度学习模型(保姆级教程)
#潞晨云计费方式潞晨云有个创新的潮汐计费,具体计费方式可以自己看看,根据自己的需要选择,然后显卡数量这里选1个,后续多卡训练可以选多个,镜像的话,我选择的是CUDA(11.7),这里根据自己的项目具体情况选择。在算力市场,可以选择符合自己需求的机器,一般的数据集几千到几万的项目4090足够用了,性能的话H100>H800;运行代码的话,点击下方Terminal,在下选箭头那里选择自己的服务器,进入自己的项目文件夹运行。之后一路按回车键,最后会生成密钥保存的地址,根据这个地址,在文件夹中找到名为。
2024-07-17 01:06:23 949
原创 从零开始学习深度学习库-5:自动微分(续)
具体来说,对于每一个节点,都将根据其输出对其他节点的影响(即偏导数)来计算输入的梯度,并将这些梯度传递回它的前驱节点。在我们的库中,计算图是动态构建的,即每当进行数学运算时,相应的节点和边就会实时地添加到图中。如果张量是任何操作的结果,例如加法或除法,这个属性将保存操作中涉及的张量列表,从而产生这个张量(计算图就是这样构建的)。如果张量不是任何运算的结果,那么这个张量是空的。例如,假设我们构建了以下的图,其中包括基本的算术运算如加法、乘法等,我们将展示如何通过这种计算图模型来计算涉及这些运算的函数的导数。
2024-07-14 20:25:05 839
原创 比较LLM和RAG技术:塑造AI的未来
RAG通过结合像GPT这样的模型的生成能力和检索机制引入了一种新颖的方法。这种机制实时搜索文本数据库(如维基百科)以找到可用于通知模型响应的相关信息。这种检索和生成的结合使得RAG不仅能产生与上下文相关的答案,而且还能基于事实信息。RAG相对于传统LLM的主要优势之一是其能够通过引用最新来源提供更准确、更具体的信息。这使得RAG特别适用于信息的准确性和及时性至关重要的应用场景,如新闻报道或学术研究助理。然而,依赖外部数据库意味着如果数据库不全面或检索过程效率低下,RAG的性能可能会受到影响。
2024-04-29 10:17:21 423
原创 使用机器学习算法构建问答系统
要启动该项目,我将首先更详细地了解知识领域,了解它们如何具体贡献,接着是系统将通过迭代方式构建的三个开发阶段。机器学习基础:从我目前的观点来看,机器学习是处理非结构化数据、发现隐藏模式并正确预测值的非常成功的方法。因此,项目的第一部分将探索当前的机器学习景观以及具体算法。鉴于神经网络的巨大成功,我认为将重点放在这一领域,并从具体示例开始,看它们能在多大程度上为 QA 系统做出贡献。自然语言处理:在这一领域,我期望了解语言的抽象表示以及帮助从具体文本中提取意义的算法。
2024-04-22 21:56:47 861
原创 深度信念网络(DBN)介绍
深度信念网络(Deep Belief Networks, DBN)是由多层受限玻尔兹曼机(Restricted Boltzmann Machines, RBM)堆叠而成的生成式图模型。这种网络结构在2006年由Geoffrey Hinton和他的研究小组首次提出,旨在通过无监督学习有效地训练多层神经网络。DBN是一种深度神经网络,它包含多个层次,每一层都学习数据中的高级抽象特征。在DBN中,最底层是可见层,负责接收输入数据;而顶层及其它所有隐藏层则是受限玻尔兹曼机,每个RBM层都学习输入数据的不同特征表示。
2024-04-19 16:13:11 3921
原创 深度学习-多尺度训练的介绍与应用
多尺度训练是指在训练过程中使用不同尺度(大小、分辨率等)的数据输入来训练机器学习模型。这种方法旨在提高模型对于输入数据尺寸变化的适应能力和泛化性能。在多尺度训练中,模型学习如何识别和理解在不同尺度下的数据特征,这对于处理现实世界中复杂和多样化的数据非常重要。
2024-04-09 23:23:01 2682 1
原创 无监督学习简介
无监督学习是机器学习的一个关键分支,它涉及到从未标注数据中学习和提取信息。不同于其他学习类型,无监督学习的数据集没有提供任何显式的输出标签或结果。因此,这种学习方法的主要任务是探索数据内在的结构和模式,以揭示隐藏在数据中的有意义的洞见和特征。在无监督学习中,算法需要自我驱动地发现数据中的结构和规律,而非通过预先定义的标准来找出正确答案。它常用于探索性数据分析、自动分类、主题模型提取等场合,是数据科学和人工智能领域的重要组成部分。
2024-04-06 23:50:23 1124 1
原创 深度学习十大算法之深度Q网络(DQN)
DQN是一种算法,它使用深度神经网络来逼近最优的Q函数。在传统的Q学习中,Q函数用于估计在给定状态下采取特定动作的期望回报。DQN通过训练神经网络来学习这个Q函数,使其能在更复杂的环境中做出决策。深度Q网络(DQN)自推出以来已经取得了显著的成功,但它在未来发展中还面临一些挑战和改进的空间。以下是对DQN未来发展的一些展望,包括当前挑战、改进方向和潜在影响。
2024-04-05 23:41:47 2425
原创 深度学习十大算法之Diffusion扩散模型
扩散模型的应用范围极为广泛,其在不同学科领域中的应用各有侧重。在物理学中,扩散模型被用来研究热传导、粒子扩散等现象。在生物学中,它帮助科学家们理解细胞内物质的传输机制。在化学领域,扩散模型对于分析化学反应和物质混合过程至关重要。此外,扩散模型在社会科学领域也发挥着重要作用。例如,在研究社会网络和人口迁移时,扩散模型可以用来模拟信息、趋势或行为模式的传播过程。在环境科学中,扩散模型用于研究污染物在环境中的扩散和分布。在经济学领域,扩散理论可以用来分析创新或新技术的市场渗透。
2024-03-31 00:14:39 2337
原创 深度学习十大算法之Word2Vec
Word2Vec的提出,标志着词嵌入技术的一次重大进步。Word2Vec是一种高效的词嵌入模型,由Google的研究团队于2013年开发。它使用一种称为神经网络的机器学习方法,通过学习大量文本数据,生成能够表达词语间丰富语义关系的词向量。Word2Vec的核心优势在于它能够捕捉到词语之间的细微关系。例如,在Word2Vec模型中,可以通过计算向量之间的距离来估计词语之间的相似度。这不仅能帮助理解语言的复杂性,还可以应用于各种NLP任务,如机器翻译和搜索引擎优化。
2024-03-28 20:53:02 1126 1
原创 深度学习十大算法之图神经网络(GNN)
神经网络是一种模仿生物神经网络(例如大脑)工作方式的算法,是人工智能和机器学习领域的核心。最简单的神经网络由输入层、若干隐藏层和输出层组成,其中每层包含多个神经元。这些神经元通过带权重的连接相互作用。输入数据在网络中传播,并在每个神经元处进行加权求和和激活函数处理,最终产生输出。神经网络能够通过学习数据中的模式来执行各种复杂任务,如分类、预测等。
2024-03-26 23:15:39 4910 2
原创 深度学习十大算法之长短时记忆网络(LSTM)
长短时记忆网络(LSTM)是一种特殊类型的循环神经网络(RNN),主要用于处理和预测序列数据的任务。LSTM由Hochreiter和Schmidhuber于1997年提出,其设计的初衷是为了解决传统RNN在处理长序列数据时面临的梯度消失或爆炸问题。LSTM网络通过特殊的结构设计,能够在长期间隔内有效地保持信息,因此在处理具有长距离依赖的序列数据时表现出色。
2024-03-23 22:02:05 2886
原创 深度学习十大算法之生成对抗网络(GAN)
生成器的任务是创建足以欺骗判别器的数据,而判别器的任务则是区分生成器产生的假数据和真实数据。GAN的应用范围非常广泛,从最初的图像生成到后来的艺术创作、游戏开发、甚至是药物发现等,GAN都表现出了其独特的价值和广阔的应用前景。总的来说,生成对抗网络(GAN)作为深度学习领域的一个重要里程碑,不仅展示了机器学习技术的新境界,也为人工智能的未来发展开辟了新的方向。条件GAN(cGAN)在原始GAN的基础上引入了额外的条件信息,如标签或数据,使生成的结果不仅依赖于输入的噪声,还受到这些条件的影响。
2024-03-22 20:57:23 2409
原创 深度学习Top10算法之深度神经网络DNN
深度神经网络(DNN)的基本构成包括输入层、若干隐藏层和输出层。每个层由多个神经元(或称为节点)组成,这些神经元通过带权重的连接相互作用。
2024-03-22 15:35:00 1961
原创 深度学习Top10算法之ResNet
梯度爆炸也是一个问题,尤其是在网络非常深的时候,梯度可能变得非常大,导致网络权重的大幅波动,也会阻碍有效的学习。此外,ResNet的成功也证明了深度在神经网络中的重要性,进一步推动了深度学习在更多领域的应用,比如自然语言处理、语音识别等。:由于其有效的梯度流动机制,ResNet可以构建比以往任何模型都深的网络,如ResNet-152等,而不会出现性能退化的问题。:尽管ResNet有效减少了梯度消失的问题,但在某些情况下仍然可能面临梯度爆炸的风险,特别是在非常深的网络中。
2024-03-21 18:45:22 1811
原创 一文搞懂机器学习
随着这个领域的不断发展,我们期待看到更多创新的应用和它对社会的积极影响。例如,在机器学习中,我们可以使用贝叶斯定理来更新模型的预测,即根据新数据来调整我们对结果的信念。这一时期的标志性事件包括Frank Rosenblatt的感知机——一种简单的神经网络模型,尽管它的能力有限,但它开启了人工神经网络的研究。通过这次旅程,我们不仅了解了机器学习的技术细节,更重要的是,我们看到了机器学习如何改变我们解决问题的方式。每个行业和领域都有其特定的挑战和需求,机器学习在提供解决方案的同时,也带来了新的问题和责任。
2024-03-19 22:37:35 1059
原创 如何在三个简单步骤中为对象检测标注图像
图像注释是计算机视觉的关键组成部分,它使机器学习和人工智能模型能够识别对象。它是与对象检测相关任务的基础,其目标是训练计算机视觉系统在大型数据集中识别和标识项目。这类项目的成功依赖于能够准确注释图像的能力。这包括围绕感兴趣项目绘制边界框并为它们分配相关类别标签。本文为那些希望了解图像识别注释的人提供指南。通过我们的三步方法,您将更深入地了解执行对象检测图像注释的过程。
2024-03-19 21:33:45 1154
原创 理解和调试深度学习模型:探索人工智能可解释性方法
关键要点深度学习模型可能非常复杂,理解其内部原理可能具有挑战性。如果用户理解模型是如何做出决策的,他们会更信任这些模型。可解释性是一个旨在理解深度学习模型工作原理的不断发展的研究领域。在本文中,我将讨论当前深度学习中解释方法的状态。我还将讨论不同方法的优势和局限性,并展示如何利用可解释性来提高深度学习模型的可靠性。未来,机器学习可以用于自动执行人类执行的日常任务,包括回答客户服务查询或处理数据。为了确保这些自动化系统的可靠性,可以使用可解释性工具来深入了解模型的决策过程。
2024-03-19 11:18:15 684
原创 从零开始学习深度学习库-4:自动微分
自动微分(Automatic Differentiation,简称AD)是一种计算数学函数导数(梯度)的技术。在深度学习和其他领域中,自动微分是一种极其重要的工具,特别是在梯度下降这类优化算法中。不同于数值微分和符号微分,自动微分以一种高效和精确的方式计算导数。自动微分的关键特点包括:1.计算图: 自动微分通常通过构建一个计算图来实现,这个图包含了原始函数的所有操作。在这个图中,每个节点代表一个操作(如加法、乘法等),而边代表数据(如变量、常数)之间的依赖关系。
2024-03-18 23:44:40 1129
原创 从零开始学习深度学习库-3:更多优化器
欢迎来到本系列的第三部分,在这里,我们将从零开始构建一个深度学习库。在这篇文章中,我们将向我们的库中添加更多的优化函数和损失函数。这里是这个系列的Github仓库:https://github.com/ashwins-code。
2024-03-15 12:05:15 935
原创 从零开始学习深度学习库-2:反向传播
当神经网络进行训练时,它会被给定一个包含输入及其对应输出的数据集。网络会根据数据集的输入产生预测,并计算其预测与数据集中给出的真实输出之间的偏差(这称为损失)。训练神经网络的目标是最小化这个损失。在计算出损失后,网络的权重和偏差会以某种方式进行调整,以减少损失值。记住在上一篇文章中提到,权重和偏差是我们可调节的网络参数,用于计算网络输出。这个过程会重复数次,希望每次重复时损失都会减少。每次重复被称为一个时代(epoch)。
2024-03-14 08:29:16 888
原创 从零开始学习深度学习库-1:前馈网络
神经网络是一种机器学习技术,它大致模仿了大脑的模型。和所有机器学习技术一样,它通过包含输入及其对应输出的数据集来学习。神经网络由层组成。每一层都通过权重和偏置与下一层相连。这些权重和偏置被网络用来计算它将给出的输出。在网络训练时,这些权重和偏置会被调整,以便网络根据其训练的数据产生最优输出。这张图展示了一个三层的神经网络。连接节点的线条用于表示网络的权重和偏置。
2024-03-13 20:23:53 434
原创 一文看明白Transformer微调过程中嵌入向量的变化
虽然重要的是要注意,使用经过微调的模型的嵌入向量并不总是为异常检测带来最佳结果(我们也可以使用概率),但这仍然是一种引人入胜的方法。微调前的嵌入向量提供通用性表征,而微调后的嵌入向量捕获任务特定的特征。微调前的嵌入向量只揭示出一个与邻近图像明显不同的异常值,表明其在异常检测方面的性能中等。微调前的嵌入向量并未显示出明显突出于其邻近图像的异常值,表明在异常检测方面的效果有限。当检查包含 100 个类别的 CIFAR-100 的嵌入向量时,我们观察到即使在微调之后,与微调前的嵌入向量相比,仍有更多的类别相连。
2024-03-13 07:01:23 1074
原创 基于多语言Transformer的斯瓦希里语文本分类器
这里我不会解释Transformer模型是如何工作的,如果想要了解,请看我的其它博客。但为了展示它们在多语言用例上的应用,我将使用斯瓦希里语数据集来训练多语言变压器。你可以从这里获取数据,了解它们是为了解决什么问题而收集的。我假设读者已经具备传统机器学习和深度学习的先决知识。
2024-03-11 16:07:42 527
原创 视觉语言处理:用Transformer桥接视觉与语言
我们的掩码语言模型(MLM)任务的训练数据由Wikipedia和Bookcorpus数据集的子集(大约30-50%,因硬件和时间限制)组成,文本经过筛选以保持少于144个标记的长度。与纯自然语言处理任务中的序列不同,图像本身并没有固有的序列,而这种位置编码为我们的模型提供了空间洞察。然而,在需要记忆的任务中,例如“法国的首都是[MASK]”(不会产生“巴黎”)时,它表现不佳。文本少于50个标记的视为小型,少于100个的视为中型,其他的为大型。这是一个有意的设计选择,编码器配备了更多的参数。
2024-03-11 00:50:18 1194
原创 基于pytorch的视觉变换器-Vision Transformer(ViT)的介绍与应用
1.调正图像大小2.运用ToTensor()函数转化格式# 使用Compose定义train_transformResize((224, 224)), # 将图像调整为224x224像素ToTensor() # 将图像转换为Tensor格式])# 使用Compose定义test_transformResize((224, 224)), # 将图像调整为224x224像素ToTensor() # 将图像转换为Tensor格式])
2024-03-10 00:33:55 1442
原创 初窥机器学习
在监督学习中,期望的输出已知,因此数据是标记过的,机器学习模型被清楚地指示它们要学习什么以及如何学习。例如,预测2023年的燃料价格,预测30英寸披萨的成本(30英寸的披萨将是一个壮观的景象!• 数据准备:这包括根据要开发的机器学习系统的要求分析和过滤数据,移除质量差、无效和不必要的数据。我们拥有配置强大的个人电脑,我们的手机拥有比带人类登上月球的计算机还要强大的计算能力。• Google的机器学习速成课程:Google作为机器学习领域的大玩家之一,设计了一个旨在教授机器学习基础知识的速成课程。
2024-03-09 13:06:02 984
原创 深度学习Top10算法之卷积神经网络(CNN)
卷积神经网络(CNN)是一种专为处理具有类似网格结构的数据(如图像)而设计的深度学习架构。自从在图像处理和计算机视觉领域取得突破性成就以来,CNN已成为这些领域的核心技术之一。卷积神经网络(CNN)在图像处理和计算机视觉领域已经取得了显著的成就。通过本文的探索,我们可以更深入地理解CNN的基础结构、工作原理及其在各种应用中的表现。总结来说,CNN的能力在于有效地提取和利用图像数据中的空间特征,这使得它们在视觉任务中非常强大和灵活。
2024-03-09 00:07:49 1285
原创 使用OpenCV创建图像素描(10行代码)
OpenCV是一个庞大的开源库,用于计算机视觉、机器学习和图像处理,在目前的实时操作中发挥着重要作用,这些操作对于当今的系统至关重要。它能够在照片和视频中识别对象、人物甚至是人类的手写笔迹。总结一下,在本指南中,我们将使用OpenCV来处理照片,即创建图像素描。Python是一种广泛用于构建网站和应用程序、自动化任务和数据分析的编程语言。Python是一种通用编程语言,这意味着它可以用来创建各种各样的应用程序,并不专门用于任何特定的问题。
2024-03-08 00:08:07 812
原创 理解循环神经网络(RNN)
循环神经网络(Recurrent Neural Networks,简称RNN)是一种在序列数据处理上具有显著优势的神经网络架构。与传统的神经网络相比,RNN的独特之处在于它能够处理并记忆序列中的前一个元素的信息,这使得它在处理像语音、文本等序列化数据时显得格外重要。RNN是一种专为处理和预测序列数据而设计的神经网络。它们通过在网络层之间传递状态信息,可以对输入序列中的时间动态进行建模。这种内部状态的更新使得RNN在处理时间序列数据(如股票价格、天气模式)和自然语言处理(如翻译和语音识别)等领域表现出色。
2024-03-06 23:25:17 3134
原创 如何构建用于物体和标志检测的自定义模型
我们可以使用亚马逊Rekognition自定义标签控制台或亚马逊Rekognition自定义标签API来训练模型。您需要为成功训练模型所需的时间付费。通常,训练需要30分钟到24小时才能完成。客户常常提出“亚马逊Rekognition标签对于我的业务需求来说不够具体”的要求,现在让我们理解AWS是如何为这类场景承担繁重工作的。Rekognition自定义标签基于Rekognition现有能力,后者已在许多类别的成千上万图像上进行了训练。
2024-03-05 17:39:39 1063
openMV开源代码,板子,原理图以及布局,DIY openMV,自己制作板子,不交智商税!!!
2023-07-27
免费分享数模竞赛近三年高教社杯国赛题目及优秀论文集(2019年-2021年)
2023-07-27
pygame游戏制作坦克大战python
2023-06-15
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人