信息检索的评价指标介绍——MAP,NDCG

MAP MAP: Mean Average Precision,表示信息检索系统(搜索引擎)的平均正确率。其公式如下: MAP=∑Qq=1AveP(q)QMAP = \frac {\sum_{q=1}^Q AveP(q)}{Q} 其中,QQ表示query的数量,AvePAveP表示每条que...

2018-01-23 22:43:37

阅读数 528

评论数 0

[转]理解LSTM网络

在简述上看到一篇介绍LSTM比较好的文章,转载过来进行收藏。Recurrent Neural Networks人类并不是每时每刻都从一片空白的大脑开始他们的思考。在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义。我们不会将所有的东西都全部丢弃,然后用空白的大脑...

2017-12-14 21:03:19

阅读数 188

评论数 0

Tree ensemble算法中feature importance计算方法

基于Tree的集成机器学习算法已经成为机器学习领域的主流算法。我们在做任何一个机器学习任务时,大部分的精力都会放在特征工程上(Feature Engineering)。我们通常会采用前向或后向策略,根据模型的结果进行特征选择。然而,在使用Tree ensemble算法时,有一个更有用的模型属性(f...

2017-12-08 19:33:25

阅读数 3794

评论数 0

LightGBM的并行优化

上一篇文章介绍了LightGBM算法的特点,总结起来LightGBM采用Histogram算法进行特征选择以及采用Leaf-wise的决策树生长策略,使其在一批以树模型为基模型的boosting算法中脱颖而出。在时间和空间上都更胜一筹,准确率也比其他模型表现得更好。这些模型在处理一般规模的数据时,...

2017-12-06 23:15:04

阅读数 2329

评论数 3

LightGBM算法的特别之处

自从微软推出了LightGBM,其在工业界表现的越来越好,很多比赛的Top选手也掏出LightGBM上分。所以,本文介绍下LightGBM的特别之处。 LightGBM算法在模型的训练速度和内存方面都有相应的优化。基于树模型的boosting算法,很多算法比如(xgboost 的默认设置)都是用预...

2017-12-06 18:23:23

阅读数 8178

评论数 0

TensorFlow 多分类标签转换成One-hot

TensorFlow 多分类标签转换成One-hot在处理多分类问题时,将多分类标签转成One-hot编码是一种很常见的手段,以下即为Tensorflow将标签转成One-hot的tensor。以Mnist为例,如果标签为“3”,则One-hot编码为[0,0,0,1,0,0,0,0,0,0].i...

2017-11-15 21:29:16

阅读数 7358

评论数 1

Tensorflow 学习笔记- tensor的声明

tensorflow 定义变量

2017-09-19 21:22:58

阅读数 416

评论数 0

提示
确定要删除当前文章?
取消 删除