二分及其典型应用问题

二分查找

经典问题:在一个严格递增的序列中找出给定的数x

二分查找的前提条件是给定的序列要是有序的。这样的话算法的一开始令[left,right]为整个序列的下标区间,然后每次测试当前[left,right]的中间位置mid=(left+right)/ 2,判断A[mid]与欲查询的元素x的大小:若A[mid]=x,则查找成功。若A[mid] > x ,则说明x在mid位置的左边,因此向左子区间[left,mid-1]查找。若A[mid]<x,则说明x在mid位置的右边,向右子区间[mid+1,right]操作。循环结束的判断条件是left<=right。

//A[]是严格递增的序列,
int binarySearch(int A[],int left, int right,int x){
	int mid;
	while(left<=right){
		mid = left +(right-left) /2; //防止溢出
		if(A[mid]==x) return mid;
		else if(A[mid] > x){
			right = mid-1;
		}else{
			left = mid+1;
		}
	}
	return -1;
}

注意二分的界限为[0,n-1]

二分的扩展

如果给定的递增序列A中的元素可能重复,如何对给定的x,求出序列中的第一个大于等于x的元素位置L以及第一个大于x的元素的位置R,这样元素x在序列中存在的区间就是一个左开右闭的区间[L,R)。注意:如果序列中不存在x,则返回的应该是假设x存在,它应该在的位置

首先对于求第一个大于等于x的位置L。和上面的查找代码有相似之处。

int lower_bound(int A[],int left, int right, int x){
	int mid;
	while(left < right){
		mid = (left+right)/2;
		if(A[mid]>=x){
			right = mid;
		}else{
			left = mid + 1;
		}
	}
	return left;
}
  1. 这里的循环结束条件为 left < right 。因为不需要判断x是否存在。当left==right时可以唯一确定x的位置
  2. 循环结束的条件为left==right 因此最后既可以返回left,也可以返回right
  3. 因为考虑到x可能比A序列中的所有的元素都要大,因此二分的界限应该为[0,n]

类似的,第一个大于x的位置R的求法:

int upper_bound(int A[],int left, int right, int x){
	int mid;
	while(left < right){
		mid = (left+right)/2;
		if(A[mid]>x){
			right = mid;
		}else{
			left = mid + 1;
		}
	}
	return left;
}

在C++中,algorithm库中有用于计算lower_bound和upper_bound的函数,
下面给出一个测试例子:

#include<cstdio>
#include<algorithm>
using namespace std;
int main(){
	int a[]={1,2,2,3,4,5,6};//注意序列一定要是严格单调递增的 
	int lower = lower_bound(a,a+7,2)-a;
	printf("%d\n",lower); //结果是1(第一个2的下标)
	int upper = upper_bound(a,a+7,2)-a;
	printf("%d\n",upper);//结果是3(3的下标)
}

几种经典的二分应用题目

假定一个解判断是否可行

书上给出了一个切绳子的例子:给出了若干段绳子的数目和各自的长度,要求从中切取K条相同长度的绳子,求绳子的最长长度。

这道题就是二分法的一个实际应用。可以这样来想:先给出一个足够大的长度,然后判断以该长度截取绳子能否得到K条相同长度的绳子数。若满足,那么令绳长的最小值等于mid,从而来寻找最值,若不满足,则令绳长的最大值等于mid,从而缩小范围。要注意边界条件的确定,书上给出了一种解决方案是循环100次,这样肯定是符合精度的要求的。:

#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
const double INF = 1e10;
const int maxn = 10000; 
int n; //绳子数
double len[maxn];//每一段的绳长 
int num;//需要截的绳子数目 

bool judge(double x){
	int ans = 0;
	for(int i=0; i<n; i++){
		ans+=(int)len[i]/x;
	}
	return ans >= num;
}
int main(){
	scanf("%d%d",&n,&num);
	for(int i=0; i<n; i++){
		scanf("%lf",&len[i]);
	}
	double lb =0,hb=INF;
	for(int i=0; i<100; i++){
		double mid = (lb+hb)/2;
		if(judge(mid))lb=mid;
		else hb=mid;
	}
	printf("%.2f",lb);
	return 0;
	
} 

可以看到题目中一个关键的式子就是:Judge(x) =(int(Li/x)的和是否是大于num)的,以这个为条件实现折半查找。因此这类型的题目关键就是写出判断式子。

最大化最小值

像最大化最小值或者最小化最大值问题,通常可以用二分搜索法可以很好的解决(自我感觉这样的题目好绕)。还是结合一下实际例子来看看:书中的题目可以抽象为这样的例子:

在这里插入图片描述

例如:将3个东西放到这5个点上,要求两两之间要尽可能远,在这种情况下求两点之间的最短距离。

二分法有一种枚举的意味,当然这种枚举是高效的。也就是说,我们可以先抛出一个解,然后通过判断这个解的合理性来缩小解的范围,直到求到最优解。可以得到下面的表达式:

C(d)=安排放的位置使得相邻的东西的距离不小于d。

于是就可以这样来思考:

  1. 将物品按照位置从小到大的顺序排放;
  2. 若第i个物品放在xi,则第i+1个物品要放在xi+d<=xk的最小的xk中。
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
const int INF = 1e9;
const int maxn = 10000; 
int n,m;//位置数目和地点数目 
int pos[maxn]; //位置 

bool Cal(int x){
	int last = 0;
	for(int i=1;i<m; i++){
		int temp = last +1;
		while(temp < n && pos[temp] < pos[last]+x){
			temp ++;
		}
		if(temp == n) return false;
		last = temp;
	}
	return true;
}
int main(){
	
	scanf("%d%d",&n,&m);
	for(int i=0; i<n; i++){
		scanf("%d",&pos[i]);
	}
	sort(pos,pos+n);
	int lb=0,lt=INF;
	while(lt-lb>1){
		int mid = (lb+lt)/2;
		if(Cal(mid))lb=mid;
		else lt = mid; 
	}
	printf("%d",lb);
	
} 

最大化平均值问题

题目的意思就是给了n件物品的各自的价值和重量,要求从中选择K件物品,使得这K件物品的单位价值最大。
这个题容易犯的错误就是简单的认为将单位价值按照从大到小的顺序排列,取前k件物品的总价值除以总的重量就是答案。这样做是有问题的。给出一个简单的证明:
令 : v 1 w 1 > v 2 w 2 > v 3 w 3 = > v 1 ∗ w 2 > v 2 ∗ w 1 ; v 2 ∗ w 3 > v 3 ∗ w 2 ; v 1 ∗ w 3 > v 3 ∗ w 1 令: \frac{v1}{w1} > \frac{v2}{w2}>\frac{v3}{w3} => v1*w2>v2*w1;v2*w3>v3*w2;v1*w3>v3*w1 :w1v1>w2v2>w3v3=>v1w2>v2w1;v2w3>v3w2;v1w3>v3w1
若按照上面的单位价值越大的思路,得出的结论就是:
v 1 + v 2 w 1 + w 2 > v 1 + v 3 w 1 + w 3 \frac{v1+v2}{w1+w2} > \frac{v1+v3}{w1+w3} w1+w2v1+v2>w1+w3v1+v3
划一下简:
( v 1 ∗ w 3 − v 3 ∗ w 1 ) + ( v 2 ∗ w 1 − v 1 ∗ w 2 ) + ( v 2 ∗ w 3 − v 3 ∗ w 1 ) > 0 ; (v1*w3-v3*w1)+(v2*w1-v1*w2)+(v2*w3-v3*w1)>0; (v1w3v3w1)+(v2w1v1w2)+(v2w3v3w1)>0;
由上面的推论可知左边的式子的第一项和第三项是大于0的,但是第二项是小于0的,因此不能直接得出上面的式子是恒大于0的。猜想是有问题的,这道题用二分的思路可以解决:设可选择的单位重量价值不小于x,则就是求

∑ v i / ∑ w i ≥ x = > ∑ ( v i − w i ∗ x ) ≥ 0 \sum{vi}/\sum{wi}\geq x => \sum(vi-wi*x)\geq 0 vi/wix=>(viwix)0

于是可以得到:
C ( x ) = ( v i − w i ∗ x ) 从 大 到 小 排 列 的 前 K 个 的 和 不 小 于 0 C(x)=(vi-wi*x)从大到小排列的前K个的和不小于0 C(x)=(viwix)K0

#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
const double INF = 1e9;
const int maxn = 10000; 
int n,k;//物品数和 选择数
int v[maxn],w[maxn]; 
double y[maxn]; //vi-wi*x 

bool Cal(double x){
	for(int i=0; i<n; i++){
		y[i] = v[i]-w[i]*x;
	}
	sort(y,y+n);
	
	double sum = 0;
	for(int i=0; i<k; i++){
		sum+=y[n-i-1];
	}
	return sum >=0;
}
int main(){
	
	scanf("%d%d",&n,&k);
	for(int i=0; i<n; i++){
		scanf("%d%d",&w[i],&v[i]);
	}
	double lb=0,ub=INF;
	for(int i=0; i<100; i++){
		double mid = (lb+ub)/2;
		if(Cal(mid))lb = mid;
		else ub = mid;
	}
	printf("%.2f",lb);
	
} 
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值