/*关于最大公约数:
* 首先补充点百科知识:求最大公约数一般有辗转相除法和更相损减法,其中前者又名欧几里德算法,乃是求两个正整数之最大公因子的算法。
*辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题yⅠ和Ⅱ)中,其原理是两个数的约数等于其小数与其大数
*除于小数的余数,如:(a,b)的约数(a>b),因为(a/b=c...d),所以(a,d)的约数等于(b,d)的约数.而后者则是出自中国的《九章算术》
*其原理是两个数的约数等于其小数与大数减小数的约数,一直减到两个数相同,其值就是约数,如:求(a,b且假设a>b)的约数,因为
*a-b=d,所以(a,b)的约数等于(b,d)的约数。
* 其实相关算法有很多,从最简单的蛮力法、到后面Stein算法,都行,在128位下差距不大,希望能够帮到大家吧。
*关于最小公倍数:
* 最简单的算法是,两个数的乘积等于其最大公约数乘以最小公倍数.
**/
public class LcmAndGcdDemo {
static int temp;
public static void main(String args[]) {
System.out.println("Stein 算法最大公约数为:" + gcd_Stein(58,16));
System.out.println("辗转相除法最大公约数为:" + gcd_div(16,58));
System.out.println("更相损减法最大公约数为:" + gcd_sub(16,58));
System.out.println("最小公倍数为:" + lcm(15,12));
}
public static int gcd_Stein(int max,int min) { //Stein算法
temp = Math.max(max,min); //首先取出大值
if(temp != max) { //判断参数大小是否需要交换位置,需要则进行交换
temp = max;
max = min;
min = temp;
}
if(0 == min) return max;
if(0 == max%2 && 0 == min%2) return 2*gcd_Stein(max/2,min/2);
if(0 == max%2) return gcd_Stein(max/2,min);
if(0 == min%2) return gcd_Stein(max,min/2);
return gcd_Stein((max+min)/2,(max-min)/2);
}
public static int gcd_div(int x,int y) { //辗转相除法
while(0 != y) { //利用循环实现
return gcd_div(y,x%y); //如果余数不为0,则递归
}
return x;
/*
if(min == 0) return max; //利用判断实现
return gcd_div(min,max%min);
*/
}
public static int gcd_sub(int max,int min) { //更相损减法
if(max == min) {
return max;
} else {
temp = Math.max(max,min); //首先取出大值
if(temp != max) { //判断参数大小是否需要交换位置,需要则进行交换
temp = max;
max = min;
min = temp;
}
return gcd_sub(min,max-min); //交换位置后进行递归计算
}
}
public static int lcm(int x,int y) { //最小公倍数
return ((x*y)/gcd_sub(x,y)); //由于在128位下,计算时间可以不计,这里调用更相损减法
}
}
Java学习历程(关于最大公约数和最小公倍数)
最新推荐文章于 2024-11-06 11:05:01 发布