Java学习历程(关于最大公约数和最小公倍数)

/*关于最大公约数:
 *		首先补充点百科知识:求最大公约数一般有辗转相除法和更相损减法,其中前者又名欧几里德算法,乃是求两个正整数之最大公因子的算法。
 *辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题yⅠ和Ⅱ)中,其原理是两个数的约数等于其小数与其大数
 *除于小数的余数,如:(a,b)的约数(a>b),因为(a/b=c...d),所以(a,d)的约数等于(b,d)的约数.而后者则是出自中国的《九章算术》
 *其原理是两个数的约数等于其小数与大数减小数的约数,一直减到两个数相同,其值就是约数,如:求(a,b且假设a>b)的约数,因为
 *a-b=d,所以(a,b)的约数等于(b,d)的约数。
 *		其实相关算法有很多,从最简单的蛮力法、到后面Stein算法,都行,在128位下差距不大,希望能够帮到大家吧。
 *关于最小公倍数:
 *		最简单的算法是,两个数的乘积等于其最大公约数乘以最小公倍数.
**/

public class LcmAndGcdDemo {
	static int temp;
	public static void main(String args[]) {
		System.out.println("Stein 算法最大公约数为:" + gcd_Stein(58,16));
		System.out.println("辗转相除法最大公约数为:" + gcd_div(16,58));
		System.out.println("更相损减法最大公约数为:" + gcd_sub(16,58));
		System.out.println("最小公倍数为:" + lcm(15,12));
		
	}
	
	public static int gcd_Stein(int max,int min) {				//Stein算法
			temp = Math.max(max,min);							//首先取出大值
			if(temp != max) {									//判断参数大小是否需要交换位置,需要则进行交换
				temp = max;
				max = min;
				min = temp;
			}
			if(0 == min) return max;
			if(0 == max%2 && 0 == min%2) return 2*gcd_Stein(max/2,min/2);
			if(0 == max%2) return gcd_Stein(max/2,min);
			if(0 == min%2) return gcd_Stein(max,min/2);
			return gcd_Stein((max+min)/2,(max-min)/2);
	}
	
	public static int gcd_div(int x,int y) {				//辗转相除法
			while(0 != y) {									//利用循环实现
				return gcd_div(y,x%y);					//如果余数不为0,则递归
			}
			return x;
			
			/*
			if(min == 0) 	return max;							//利用判断实现
			return gcd_div(min,max%min);
			*/
	}
	
	public static int gcd_sub(int max,int min) {				//更相损减法
		if(max == min) {
			return max;
		} else {
			temp = Math.max(max,min);							//首先取出大值
			if(temp != max) {									//判断参数大小是否需要交换位置,需要则进行交换
				temp = max;
				max = min;
				min = temp;
			}
			return gcd_sub(min,max-min);						//交换位置后进行递归计算
		}
	}
	
	public static int lcm(int x,int y) {						//最小公倍数
		return ((x*y)/gcd_sub(x,y));							//由于在128位下,计算时间可以不计,这里调用更相损减法
	}
	
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值